Authors A.O. Kucherik, S.V. Kutrovskaya, A.V. Osipov, A.V. Istratov, A.Y. Shagurina, A.V. Podlesnyi
Month, Year 09, 2015 @en
Index UDC 544.537
Abstract In this research the degree of influence of the morphology (particle diameter of the colloid, the distance between the deposited particles, the number of layers etc.) on the optical and electrical properties of the deposited thin film of bimetallic clusters was studied. For the formation of a quasi-periodically spaced clusters the method of deposition of particles of colloidal system was used, allowing the nanoparticles to precipitate out of the colloids by local heating and phenomena anomalous diffusion of particles near the surface. The optical properties of the deposited bimetallic films was shown and modeling of optical phenomena observed using the FDTD method. The calculated transmission spectra match qualitatively with the experimental data. There is a complex change of the transmission spectrum in the 380–430 nm, 520–600 nm, with the formation of local extremum. Whose presence can be explained by the distance between the particles on the optical properties of the film. The discrepancy in the numerical values can be attributed to the estimated feature geometry: in the model problem particles lie strictly on each other (because of the need to use a computational grid) and with accurately determine the distance between the particles in a single layer.

Download PDF

Keywords Nanoparticles; colloidal solution; transmission spectrum; laser treatment; transparencies films.
References 1. Genov D.A., Sarychev A.K., Shalaev V.M., Wei A. Resonant field enhancements from metal nanoparticle arrays, Nanoletters, 2004, Vol. 4, No. 1, pp. 153-158.
2. Axelevitch A., Gorenstein B., Golan G. Investigation of Optical Transmission in Thin Metal Films, Physics Procedia, 2012, No. 32, pp. 1-13.
3. Golan G., Axelevitch A. Microelectronics Journal, 2000, Vol. 31, pp. 469-473.
4. Sarychev A.K. and Shakaev V.M. Field distribution, Anderson localization, and optical phenomena in random metal-dielectric films, Optics of nanostructured materials (by eds. V.A. Markel and T. George) Wiley, New York, 2000.
5. Bonch-Bruevich A.M., Vartanyan T.A., Leonov N.B., Przhibel'skiǐ S.G., Khromov V.V. Comparative action of heat and optical radiation on the structure of island metal films by optical fluctuation microscopy, Optics and Spectroscopy, 2001, Vol. 91, No. 5, pp. 779-785.
6. Destouches N., Crespo-Monteiro N., Vitrant G., Lefkir Y., Reynaud S., Epicier T., Liu Y., Vocanson F., Pigeon F. Self-organized growth of metallic nanoparticles in a thin film under homogeneous and continuous-wave light excitation, J. Mater. Chem. C, 2014, Vol. 2, No. 31, pp. 6256-6263.
7. Persson B.N.J., Liebsch A. Optical properties of two-dimensional systems of randomly distributed particles, Physical Review B V, 1983, Vol. 28, No. 8, pp. 4247-4254.
8. Sonay A.Y., Зağlayan A.B., Зulha M. Synthesis of peptide mediated au core-ag shell nanoparticles as surface-enhanced raman scattering labels, Plasmonics, 2012, Vol. 7, No. 1, pp. 77-86.
9. Rui M. S. Pereira, J. Borges, Filipa C. R. Peres, Paulo A.S. Pereira, Smirnov G.V., Vaz F., Cavaleiro A., Vasilevskiy M.I. Effect of clustering on the surface plasmon band in thin films of metallic nanoparticles, Journal of Nanophotonics, 2015, Vol. 9, No. 1, pp. 093796 (1-12).
10. Antipov A.A., Arakelyan S.M., Vartanyan T.A., Itina T.E., Kutrovskaya S.V., Kucherik A.O., Sapegina I.V. Optical properties of nanostructured gold‒silver films formed by precipitation of small colloid drops, Optics and Spectroscopy, 2015, Vol. 119, No. 1, pp. 119-123.
11. Bakhti S., Biswas S., Hubert C., Reynaud S., Vocanson F., Destouches N. Switchable Silver Nanostructures Controlled with an Atomic Force Microscope, J. Phys. Chem. 12. Mahfouzi F., Nagaosa N., Nikolic B.K. Spin-Orbit Coupling Induced Spin-Transfer Torque and Current Polarization in Topological-Insulator/Ferromagnet Vertical Heterostructures, Physical review letters, 2012, Vol. 109, No. 16, pp. 166602 (1-5).
13. Dragunov V.P., Neizvestnyy I.G., Gridchin V.A. Osnovy nanoelektroniki [Fundamentals of nanoelectronics]. Moscow: Logos, 2006, 496 p.
14. Mahfouzi F., Nikolic B.K., Chen S.-H, and Chang C.-R. Phys. Rev. B, 2010, Vol. 82, pp. 195440.
15. Datta S. Quantum transport: atom to transistor. Cambridge University Press, Cambridge, 2005.
16. Liu Z., Yuan Y., Khan S., Abdolvand A., Whitehead D., Schmid M. and Li L. (2009) Generation of metal-oxide nanoparticles using continuous-wave fibre laser ablation in liquid, J. Micromech. Microeng. 19: 054008. doi:10.1088/0960-1317/19/5/054008
17. Antipov A.A., Arakelyan S.M., Kutrovskaya S.V., Kucherik A.O., Makarov A.A., Nogtev D.S., Prokoshev V.G. Impul'snoe lazernoe osazhdenie klasternykh nanostruktur iz kolloidnykh odnokomponentnykh sistem [Pulsed laser deposition of cluster nanostructures of one-component colloidal systems], Izvestiya RAN. Seriya fizicheskaya [Bulletin of the Russian Academy of Sciences. Physics], 2012, Vol. 76, No. 6, pp. 690-697.
18. Antipov A.A., Arakelyan S.M., Kutrovskaya C.V., Kucherik A.O., Vartanyan T.A. Osazhdenie bimetallicheskikh klasterov Au/Ag s ispol'zovaniem metoda lazernogo osazhdeniya nanochastits iz kolloidnykh sistem [Deposition of bimetallic clusters of Au/Ag using the method of laser deposition of nanoparticles from colloidal systems], Optika i spektroskopiya [Optics and Spectroscopy], 2014, Vol. 116, No. 2, pp. 166-169.
19. Abramov D.V., Antipov A.A., Arakelian S.M.,Khor'kov K.S., Kucherik A.O., Kutrovskaya S.V., Prokoshev V.G. New advantages and challenges for laser-induced nanostructured cluster materials: functional capability for experimental verification of macroscopic quantum phenomena, Laser Physics, 2014б Vol. 24, No. 07, pp. 074010 (1-9).
20. Antipov A.A., Arakelyan S.M., Kutrovskaya S.V., Kucherik A.O. Electrical Properties of Metal Clusters Structures Formed on the Surface of Dielectrics, Technical Physics Letters, 2014, Vol. 40, No. 6, pp. 529-532.

Comments are closed.