Article

Article title STUDY OF GAS-SENSITIVE PROPERTIES OF NANOCOMPOSITE FILMS CONTAINING CARBON NANOTUBES
Authors O.I. Il’in, V.S. Klimin, M.Z. Nadda, V.V. Petrov, N.N. Rudyk, A.A. Fedotov, Trinh Van Muoi, V.Y. Yanenko
Section SECTION III. NANOMATERIALS
Month, Year 09, 2015 @en
Index UDC 531.788.73
DOI
Abstract This article describes the current problems of the gas sensor technology, obtaining new sensor elements based on modern nanometerialov. The advantages and disadvantages of sensing elements based on carbon nanotubes. The stability of parameters, good conductivity, as well as the possibility of obtaining carbon nanotubes with both conducting and semiconducting properties allows us to consider them as a sensor element of the gas composition. The nanotubes were obtained by pyrolysis of methane on the powdered catalyst Co/MgO. The nanocomposite formed by tetraethoxysilane, with the introduction of a solution of CNTs as a builder. There have been studies of the surface morphology of the films by scanning electron microscopy and elemental analysis of surface films by energodispersnogo microanalysis. As a result of this work it was examined sensory properties of test structures based nanocomposite films of amorphous silica prepared by the sol-gel process comprising the carbon nanotube. The analysis of the temperature dependence of the resistance test sensory structures and to investigate their sensitivity to gas nitrogen dioxide and ammonia. It is shown that the materials obtained from alcoholic solutions with tetraethoxysilane containing certain concentration of carbon nanotubes is semiconductor of p-type conductivity. The resulting materials are sensitive to nitrogen dioxide and ammonia. These sensory structures based on SiO2-CNT nanocomposite has a higher sensitivity, faster response time and recovery, but higher operating temperatures than sensors ammonia and nitrogen dioxide on the basis of multi-walled CNT. These results demonstrate that adsorption type gas sensors based nanocomposite films containing CNTs are promising extreme electronics devices capable of operating at high temperatures.

Download PDF

Keywords Nanotechnology; nanostructures; nanomaterials; nanocomposites; nanocomposite films; сarbon nanotubes; gas sensor; nanosystems technology.
References 1. Ageev O.A., Ilin O.I., Kolomiytsev A.S., Rubashkina M.V., Smirnov V.A., Fedotov A.A. Investigation of effect of geometrical parameters of vertically aligned carbon nanotubes on their mechanical properties, Advanced Materials Research, 2014, Vol. 894, pp. 355-359.
2. Ageev O.A., Il'in O.I., Kolomiitsev A.S., Konoplev B.G., Rubashkina M.V., Smirnov V.A., Fedotov A.A. Development of a technique for determining Young's modulus of vertically aligned carbon nanotubes using the nanoindentation method, Nanotechnologies in Russia, 2012, Vol. 7, No. 1-2, pp. 47-53.
3. Steve Park, Michael Vosguerichian, Zhenan Bao. A review of fabrication and applications of carbon nanotube film-based flexible electronics, Nanoscale, 2013, Vol. 5, pp. 1727-1752.
4. Eric Pop, David Mann, Qian Wang, Kenneth Goodson, Hongjie Dai. Thermal conductance of an individual single-wall carbon nanotube above room temperature, Nano Lett, 2006, Vol. 6, No. 1, pp. 96-100.
5. Ageev O.A., Il'in O.I., Kolomiytsev A.S., Konoplev B.G., Rubashkina M.V., Smirnov B.A., Fedotov A.A. Opredelenie geometricheskikh parametrov massiva vertikal'no orientirovannykh uglerodnykh nanotrubok metodom atomno-silovoy mikroskopii [Definition of geometrical parameters of the array of vertically aligned carbon nanotubes using atomic force microscopy], Nano- i mikrosistemnaya tekhnika [Nano and Microsystem Technique}, 2012, No. 3, pp. 9-13.
6. Ageev O.A., Blinov Y.F., Il'in O.I., Kolomiitsev A.S., Konoplev B.G., Rubashkina M.V., Smirnov V.A., Fedotov A.A. Memristor effect on bundles of vertically aligned carbon nanotubes tested by scanning tunnel microscopy, Technical Physics. The Russian Journal of Applied Physics, 2013, Vol. 58, No. 12, pp. 1831-1836.
7. Ageev O.A., Alyab'eva N.I., Il'in O.I., Klimin V.S., Fedotov A.A., Polyakov V.V. Issledovanie rezhimov formirovaniya kataliticheskikh tsentrov dlya vyrashchivaniya orientirovannykh massivov uglerodnykh nanotrubok [The study of the modes of formation of catalytic centers for growing oriented arrays of carbon nanotubes], Izvestiya vuzov. Severo-Kavkazskiy region. Tekhnicheskie nauki. Spets. vypusk. Mekhatronika. Sovremennoe sostoyanie i tendentsii razvitiya [University News. North-Caucasian Region. Technical Sciences Series. Mechatronics. Current status and development trends], 2009, pp. 159-161.
8. Alekseev Alexander, Loos Joachim, Ageev Oleg. Gijsbertus de With et al. Local organization of graphene network inside graphene/polymer composites, Advanced Functional Materials, 2012, Vol. 22, No. 6, pp. 1311-1318.
9. Ageev O.A., Klimin V.S., Syurik Yu.V., Fedotov A.A. Poluchenie nanokompozitnykh polimernykh materialov modifitsirovannykh uglerodnymi nanostrukturami na osnove NANOFAB NTK-9 [Production of nanocompound polymeric materials based on multifunctional modular nanotechnologycal platform NANOFAB NTK-9], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2009, No. 1 (90), pp. 135-142.
10. Ageev O.A., Zolotarev D.V., Klimin V.S., Cherednichenko D.I. Izuchenie zakonomernostey rosta uglerodnykh nanotrubok pri plazmenno-khimicheskom osazhdenii iz gazovoy fazy [Studying of laws of carbon nanotubes growth during plazmenno-chemical sedimentation from the gas phase], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 4 (117), pp. 61-68.
11. Ageev O.A., Kolomiytsev A.S., Mikhaylichenko A.V., Smirnov V.A., Ptashnik V.V., Solodovnik M.S., Fedotov A.A., Zamburg E.G., Klimin V.S., Il'in O.I., Gromov A.L., Rukomoykin A.V. Poluchenie nanorazmernykh struktur na osnove nanotekhnologicheskogo kompleksa NANOFAB NTK-9 [Nanoscale structures’ production based on modular nanotechnologycal platform NANOFAB NTK-9], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 1, pp. 109-116.
12. Ageev O.A., Il'in O.I., Klimin V.S., Kolomiytsev A.S., Fedotov A.A. Issledovanie rezhimov formirovaniya i modifikatsii orientirovannykh massivov uglerodnykh nanotrubok metodom PECVD na nanotekhnologicheskom komplekse NANOFAB NTK-9 [Research modes of the formation and modification oriented arrays of carbon nanotubes by pecvd on nanotechnological complex NANOFAB NTK-9] Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 4 (117), pp. 69-77.
13. Ageev O.A., Il'in O.I., Klimin V.S., Konoplev B.G., Fedotov A.A. Issledovanie rezhimov formirovaniya kataliticheskikh tsentrov dlya vyrashchivaniya orientirovannykh massivov uglerodnykh nanotrubok metodom PECVD [The study of the modes of formation of catalytic centers for growing oriented arrays of carbon nanotubes by PECVD], Khimicheskaya fizika i mezoskopiya [Chemical Physics and Mesoscopics], 201, Vol. 13, No. 2, pp. 226-231.
14. Rakov E.G. Nanotrubki i fullereny [Nanotubes and fullerenes]. Moscow: Universitetskaya kniga, Logos, 2006, 376 p.
15. Shilova O.A. Silikatnye nanorazmernye plenki, poluchaemye zol'-gel' metodom, dlya planarnoy tekhnologii izgotovleniya poluprovodnikovykh gazovykh sensorov [Silicate nanosized films obtained by the Sol-gel method for planar fabrication technology of semiconductor gas sensors], Fizika i khimiya stekla [Physics and Chemistry of Glasses], 2005, Vol. 31, No. 2, pp. 270-293.
16. Zinov'ev K.V., Vikhlyantsev O. F., Gribov O.G. Poluchenie okisnykh plenok iz rastvorov, ispol'zovanie ikh v elektronnoy tekhnike [The obtaining of oxide films from solutions, their use in electronics]. Moscow: TsNII. Elektronika, 1974, 62 p.
17. Sander J. Tans, Michel H. Devoret, Hongjie Dai, Richard E. Smalley et. al. Individual single-wall carbon nanotubes as quantum wires, Nature, 1997, No. 38, pp. 474-477.
18. Coluci V.R. et. al. Geometric and electronic structure of carbon nanotube networks: ‘super’-carbon nanotubes, Nanotechnology, 2006, No. 17, pp. 617-621.
19. Barsan N.,Weimar U. Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity, J. Phys.: Condens. Matter., 2003, Vol. 15, pp. R813-R839.
20. Jianwei Gong, Jianren Sun, Quanfang Chen. Micromachined Sol–gel carbon nanotube/SnO2 nanocomposite hydrogen sensor, Sensors and Actuators B, 2008, Vol. 130, pp. 829-835.
21. Krylov O.V. Geterogennyy kataliz [Heterogeneous catalysis]. Moscow: Akademkniga, 2004, 679 p.

Comments are closed.