Authors E.Yu. Gusev, J.Y. Jityaeva, Al.V. Bykov, V.V. Bespoludin
Month, Year 09, 2015 @en
Index UDC 621.38.049.77
Abstract This paper presents results of the deposition of polycrystalline silicon films for the formation of inertial sensor elements of MEMS/NEMS. Polysilicon films have been formed by plasma-enhanced chemical vapor deposition. The influence of technological parameters such as power, chamber pressure and temperature on the properties of silicon films has been investigated. The grain size and root-mean square (RMS) roughness increased with the temperature and pressure were shown. However, the RMS roughness has reached maximum at 600°С with following decreasing. Polycrystalline structure of layers has been confirmed using reflection high-energy electron diffraction and ellipsometry. The electrical parameters of doped films have been measured by contactless and Hall/van der Pauw techniques. Concentration, mobility of charge carrier, resistivity and sheet resistance of doped films were amounted of 1,9–2,4·1020 cm-3, 27,5–34,1 cm2/V·s, 9,35–9,7·10-4 Ω·cm; 2,0 Ω/sq (film thickness of 300 nm) and 8,9 Ω/sq (film thickness of 2 µm), respectively. The microhardness and Young modulus of obtained films were 15–20 GPa and 150–250 GPa were measured by nanoindentation using atomic force microscopy. Process parameters have been identified for the films with characteristics that are desired and satisfied with the requirements for conducting and structural layers of microelectromechanical systems. The samples of inertial masses based on the polycrystalline silicon / silicon oxide / silicon substrate (poly-Si/SiO2/n-type Si(100)) structure have been prepared. The results of the study can be useful for manufacturing processes development and fabrication of MEMS gyroscopes and accelerometers.

Download PDF

Keywords Nanomaterials; MEMS; surface micromachining; PECVD; properties; polycrystalline silicon.
References 1. French P.J. Polysilicon: a versatile material for Microsystems, Sensors and actuators A Physical, 2002, Vol. 99, pp. 3-12.
2. Berman D., Krim J. Surface science, MEMS and NEMS: Progress and opportunities for surface science research performed on, or by, microdevices, Progress in Surface Science, 2013, Vol. 88, pp. 171-211.
3. Sniegowski J.J., Boer M.P. IC-Compatible polysilicon surface micromachining, Annual Review of Materials Research, 2000, Vol. 30, pp. 299-333.
4. Bhushan B. Springer Handbook of Nanotechnology. Heidelberg: Dordrecht: London: New York: Springer, 2010, 1964 p.
5. Senturia S.D. Microsystem design. Kluwer academic publishers: New York: Boston: Dordrecht: London: Moscow, 2002, 689 p.
6. Ageev O.A., Mamikonova V.M., Petrov V.V., Kotov V.N., Negodenko O.N. Mikroelektronnye preobrazovateli neelektricheskikh velichin: Uchebnoe posobie [Microelectronic converters of non-electrical quantities: a Training manual]. Taganrog: TRTU, 2000, 153 p.
7. Perrin J., Leroy O., Bordage M.C. Cross-sections, rate constants and transport coefficients in silane plasma, Contrib. Plasma Phys., 1996, Vol. 36, pp. 3-49.
8. Lysenko I.E. Modelirovanie dvukhosevogo mikromekhanicheskogo sensora uglovykh skorostey i lineynykh uskoreniy LR-tipa [Modeling of dual-axis micromechanical sensor of angular soon-scribed and linear accelerations LR-type], Inzhenernyy vestnik Dona [Engineering journal of Don], 2013, No. 1. Available at: magazine/archive/n1y2013/1549 (Accessed 3 December 2014).
9. Alekseev A.N., Sokolov I.A., Ageev O.A., Konoplev B.G. Kompleksnyy podkhod k
tekhnologicheskomu osnashcheniyu tsentra prikladnykh razrabotok. Opyt realizatsii v NOTs «Nano-tekhnologii» YuFU [Comprehensive approach to technological equipping for R&D center. The experience in implementing of SEC «Nanotechnology» SFedU Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 4 (117), pp. 207-210.
10. Bachman M. RCA-1 Silicon wafer cleaning. Available at: http:// (Accessed 8 October 2014).
11. Kern W. Handbook of semiconductor wafer cleaning technology: science, technology, and applications. Noyes: William Andrew, 1993, 623 p.
12. Velichko R.V., Gusev E.Yu., Gamaleev V.A., Mikhno A.S., Bychkova A.S. Issledovanie rezhimov plazmokhimicheskogo osazhdeniya plenok nano- i polikristallicheskogo kremniya [The study of modes of plasma chemical deposition of nano- and polycrystalline silicon], Fundamental'nye issledovaniya [Fundamental Research], 2012, No. 11, pp. 1176-1179.
13. Gusev E. Velichko R. Poly- and nanocrystalline silicon films formation by PECVD for micro- and nanodevices, The International Conference “Micro- and Nanoelectronics – 2012” (ICMNE-2012) (Zvenigorod, 1-5 oct., 2012). Moscow-Zvenigorod: IPT RAS, 2012, pp. P1-46.
14. Eroshina Yu.Yu., Gamaleev V.A., Gusev E.Yu. Poluchenie polikristallicheskikh konsol'nykh struktur metodom plazmokhimicheskogo osazhdeniya [Obtaining polycrystalline cantilever structures by plasma enhanced chemical vapor deposition], Fundamental'nye problemy radioelektronnogo priborostroeniya [Fundamental problems of radioelectronic instrument-making], 2012, Vol. 12, No. 2, pp. 146-148.
15. Ageev O.A., Kolomiytsev A.S., Mikhaylichenko A.V., Smirnov V.A., Ptashnik V.V., Solodovnik M.S., Fedotov A.A., Zamburg E.G., Klimin V.S., Il'in O.I., Gromov A.L., Rukomoykin A.V. Poluchenie nanorazmernykh struktur na osnove nanotekhnologicheskogo kompleksa NANOFAB NTK-9 [Nanoscale structures’ production based on modular nanotechnologycal platform NANOFAB NTK-9], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 1 (114), pp. 109-116.
16. Ageev O.A., Il'in O.I., Kolomiytsev A.S., Konoplev B.G., Rubashkina M.V., Smirnov V.A., Fedotov A.A. Razrabotka metodiki opredeleniya modulya Yunga vertikal'no orientirovannykh uglerodnykh nanotrubok metodom nanoindentirovaniya [Development of a method of determining the young's modulus of vertically designed bathrooms the carbon nanotubes using nanoindentation], Rossiyskie nanotekhnologii [Russian Nanotechnology], 2012, Vol. 7, No. 1-2, pp. 54-59.
17. Konoplev B.G., Ageev O.A. Elionnye i zondovye nanotekhnologii dlya mikro- i nanosistemnoy tekhniki [Focused ion beams and probe nanotechnologies for micro- and nanosystem hard-ware], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2008, No. 12 (89), pp. 165-175.
18. Gusev E.Yu., Kolomiytsev A.S., Zhityaeva Yu.Yu., Gamaleev V.A. Issledovanie vliyaniya geometricheskikh parametrov konsol'noy balki na stepen' udaleniya zhertvennogo sloya [Study of the influence of geometrical parameters of cantilever on the degree of removal of the sacrificial layer], Nanotekhnologii v elektronike i MEMS: Mezhdunarodnaya konferentsiya. (Taganrog, 20-25 okt. 2014) [Nanotechnology in electronics and MEMS: proceedings of the international conference. (Taganrog, 20-25 Oct. 2014). Taganrog: Publishing house of SFU, 2014]. Taganrog: Izd-vo YuFU, 2014, pp. 91-92.
19. Gusev E.Yu., Zhityaeva Yu.Yu., Kolomiytsev A.S., Gamaleev V.A., Kots I.N., Bykov A.V. Issledovanie rezhimov zhidkostnogo travleniya zhertvennogo sloya SiO2 dlya formirovaniya mikromekhanicheskikh struktur na osnove Si*/SiO2/Si [Research of wet SIO2 sacrificial layer etching for mems structures forming based on POLY-SI*/SIO2/SI], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 2 (163), pp. 236-245.
20. Kirt R.W., Muller R.S. Etch rates for micromachining processing, Journal of
microelectromechanical systems, 1996, Vol. 5, No. 4, pp. 256-269.
21. Urmanov D.M. Kontseptsiey po razvitiyu proizvodstva MEMS-izdeliy v Rossii na period do 2017 g. [The concept for development of manufacturing MEMS-based products in Russia for the period up to 2017]. Available at: (Accessed 3 December 2014).

Comments are closed.