Authors S.V. Balakirev, M.M. Eremenko, M.S. Solodovnik
Month, Year 09, 2015 @en
Index UDC 621.793.14
Abstract The model of GaAs/GaAs(001) molecular beam epitaxial growth considering arsenic tetramer flux influence on geometrical characteristics of nucleating island arrays is presented in the paper. The simulation is carried out with a kinetic Monte Carlo method and takes into account the surface specifics, multicomponent composition of the growing film and adatom local environment. Due to the large mobility of arsenic on the surface, arsenic molecule diffusion step was taken equal to its average diffusion length. It made it possible to accelerate computations essentially without significant corruption of the simulation results. It is shown that islands are preferentially forme in the trenches of (2x4)-reconstructe surface of GaAs(001) an favor elongation along the [110] direction. The island density increases with the surface coverage increase and reaches a saturation value. The increase of arsenic flux from 3·1014 до 4·1015 cm-2s-1 leads to the increase of the island density from 3,1·1012 to 4,6·1012 cm-2 at the coverage equal to 0,2 monolayer of GaAs. At the same time the average size decreases from 3,6 to 2,5 nm. The influence of arsenic flux on the average island size is growing with the surface coverage increase. The island size distribution function shows that the island characteristics are affected by arsenic flux more significantly in the range of large values. This is attributed to the shortage of gallium atoms in comparison with deposited arsenic molecules that prevents large island formation and leads to the dramatic growth of little island concentration. The simulation results are in good agreement with experimental data.

Download PDF

Keywords Nanotechnology; nanostructures; nanomaterials; semiconductors; molecular beam epitaxy; gallium arsenide; arsenic flux; kinetic modeling; Monte Carlo method.
References 1. Manfra M.J. Molecular Beam Epitaxy of Ultra-High-Quality AlGaAs/GaAs Heterostructures: Enabling Physics in Low-Dimensional Electronic Systems, Annual Review of Condensed Matter Physics, 2014, Vol. 5, pp. 347-373.
2. Ageev O.A., Kolomiytsev A.S., Mikhaylichenko A.V., Smirnov V.A., Ptashnik V.V., Solodovnik M.S., Fedotov A.A., Zamburg E.G., Klimin V.S., Il'in O.I., Gromov A.L., Rukomoykin A.V. Poluchenie nanorazmernykh struktur na osnove nanotekhnologicheskogo kompleksa NANOFAB NTK-9 [Nanoscale structures’ production based on modular nanotechnologycal platform NANOFAB NTK-9], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 1 (114). pp. 109-116.
3. Alekseev A.N., Sokolov I.A., Ageev O.A., Konoplev B.G. Kompleksnyy podkhod k
tekhnologicheskomu osnashcheniyu tsentra prikladnykh razrabotok. Opyt realizatsii v NOTs «Nanotekhnologii» YuFU [Comprehensive approach to technological equipping for R&D center. The experience in implementing of SEC «Nanotechnology» SFedU] Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 4 (117), pp. 207-210.
4. Ageev O.A., Konoplev B.G., Rubashkina M.V., Rukomoikin A.V., Smirnov V.A., Solodovnik M.S. Studying the effect of geometric parameters of oriented GaAs nanowhiskers on Youngs modulus using atomic force microscopy, Nanotechnologies in Russia, 2013, Vol. 8, No. 1-2, pp. 23-28.
5. Ageev O.A., Smirnov V.A., Solodovnik M.S., Rukomoikin A.V., Avilov V.I. A study of the formation modes of nanosized oxide structures of gallium arsenide by local anodic oxidation, Semiconductors, 2012, Vol. 46, No. 13, pp. 1616-1621.
6. Hata M., Isu T., Watanabe A., Katayama Y. Distributions of growth rates on patterned surfaces measured by scanning microprobe reflection high‐energy electron diffraction, J. Vac. Sci. Technol. B, 1990, Vol. 8 (4), pp. 692.
7. LaBella V.P., Bullock D.W., Ding Z., Emery C., Harter W.G., Thibado P.M. Monte Carlo derived diffusion parameters for Ga on the GaAs(001)-(2Ч4) surface: A molecular beam epitaxy–scanning tunneling microscopy study, J. Vac. Sci. Technol. A, 2000, Vol. 18 (4), pp. 1526-1531.
8. Avery A.R., Dobbs H.T., Holmes D.M., Joyce B.A., Vvedensky D.D. Nucleation and Growth of Islands on GaAs Surfaces, Phys. Rev. Lett.,1997, Vol. 79 (20), pp. 3938-3941.
9. Itoh M., Bell G.R., Joyce B.A., Vvedensky D.D. Transformation kinetics of homoepitaxial islands on GaAs(001), Surf. Sci., 2000, Vol. 464 (2-3), pp. 200.
10. Kratzer P., Morgan C.G., Scheffler M. Model for nucleation in GaAs homoepitaxy derived from first principles, Phys. Rev. B, 1999, Vol. 59(23), pp. 15246.
11. Amrani A., Djafari Rouhani M., Mraoufel A. A Monte Carlo investigation of Gallium and Arsenic migration on GaAs(100) surface, Appl. Nanosci., 2011, Vol. 1, pp. 59-65.
12. Kratzer P., Scheffler M. Reaction-Limited Island Nucleation in Molecular Beam Epitaxy of Compound Semiconductors, Phys. Rev. Lett., 2002, Vol. 88 (3), pp. 036102.
13. Smilauer P., Wilby M.R., Vvedensky D.D. Reentrant layer-by-layer growth: A numerical study, Phys. Rev. B, 1993, Vol. 47 (7), pp. 4119.
14. Kley A., Ruggerone P., Scheffler M. Novel Diffusion Mechanism on the GaAs(001) Surface: The Role of Adatom-Dimer Interaction, Phys. Rev. Lett., 1997, Vol. 79 (26), pp. 5278.
15. Pashley M.D. Electron counting model and its application to island structures on molecular-beam epitaxy grown GaAs(001) and ZnSe(001), Phys. Rev. B, 1989, Vol. 40 (15), pp. 10481.
16. Daweritz L., Ploog K. Contribution of reflection high-energy electron diffraction to nanometre tailoring of surfaces and interfaces by molecular beam epitaxy, Semicond. Sci. Tech., 1994, Vol. 9 (2), pp. 123-136.
17. Kangawa Y., Ito T., Taguchi A., Shiraishi K., Irisawa T., Ohachi T. Monte Carlo simulation for temperature dependence of Ga diffusion length on GaAs(001), Appl. Surf. Sci., 2002, Vol. 190, pp. 517-520.
18. Foxon C.T., Joyce B.A. Interaction kinetics of As4 and Ga on {100} GaAs surfaces using a modulated molecular beam technique, Surf. Sci., 1975, Vol. 50, pp. 434.
19. Tok E.S., Neave J.H., Zhang J., Joyce B.A., Jones T.S. Arsenic incorporation kinetics in GaAs(001) homoepitaxy revisited, Surf. Sci., 1997, Vol. 374, pp. 397.
20. Morgan C.G., Kratzer P., Scheffler M. Arsenic Dimer Dynamics during MBE Growth: Theoretical Evidence for a Novel Chemisorption State of As2 Molecules on GaAs Surfaces, Phys. Rev. Lett., 1999, Vol. 82 (24), pp. 4886.
21. Nishinaga T., Shen X.Q. Surface diffusion and adatom stoichiometry in GaAs MBE studied by microprobe-RHEED/SEM MBE, Appl. Surf. Sci., 1994, Vol. 82-83, pp. 141.
22. Nishinaga T. Atomistic aspects of molecular beam epitaxy, Prog. Cryst. Growth Charact. Mater., 2004, Vol. 48-49, pp. 104-122.
23. Higuchi Y., Uemura M., Masui Y., Kitada T., Shimomura S., Hiyamizu S. V/III ratio
dependence of surface migration length of As4 molecules during molecular beam epitaxy of GaAsP on (4 1 1)A GaAs substrates, J. Cryst. Growth., 2003, Vol. 251, pp. 80-84.
24. Tatsuoka Y., Kamimoto H., Kitano Y., Kitada T., Shimomura S., Hiyamizu S. GaAs/GaAs0.8P0.2 quantum wells grown on (n11)A GaAs substrates by molecular beam epitaxy, J. Vac. Sci. Technol. B, 1999, Vol. 17 (3), pp. 1155-1157.
25. Tok E.S., Neave J.H., Allegretti F.E., Zhang J., Jones T.S., Joyce B.A. Incorporation kinetics of As2 and As4 on GaAs(110), Surf. Sci., 1997, Vol. 371, pp. 277.
26. Garcia J.C., Neri C., Massies J. A comparative study of the interaction kinetics of As2 and As4 molecules with Ga-rich GaAs (001) surfaces, J. Cryst. Growth., 1989, Vol. 98, pp. 511-518.
27. Balakirev S.V., Blinov Yu.F., Solodovnik M.S. Model' nachal'noy stadii gomoepitaksial'nogo rosta GaAs metodom MLE s uchetom sootnosheniya potokov rostovykh komponent [Model of the initial stage of gaas homoepitaxial growth by mbe considering growth components flux ratio], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 9 (158), pp. 93-105.
28. Itoh. M., Bell G.R., Avery A.R., Jones T.S., Joyce B.A., Vvedensky D.D. Island Nucleation and Growth on Reconstructed GaAs(001) Surfaces, Phys. Rev. Lett., 1998, Vol. 81 (3), pp. 633-636.
29. Ratsch C., Smilauer P., Zangwill A., Vvedensky D.D. Submonolayer epitaxy without a critical nucleus, Surf. Sci., 1995, Vol. 329 (1-2), pp. L599-L604.
30. Joyce B.A., Vvedensky D.D., Bell G.R., Belk J.G., Itoh M., Jones T.S. Nucleation and growth mechanisms during MBE of III-V compounds, Mat. Sci. Eng. B, 1999, Vol. 67, pp. 7-16.

Comments are closed.