Article

Article title SIMULATION OF THE POLYCRISTALLINE SILICONCANTILEVER DEFLECTION
Authors A.V. Bykov
Section SECTION IV. NANOSYSTEMS ENGINEERING
Month, Year 09, 2015 @en
Index UDC 629.052.7
DOI
Abstract The goal of the work is development of a model of microcantilever and obtaining the dependences of cantilever geometrical parameters influence its sensitivity. The results can be used to optimize the microcantilevers design for atomic force microscopes with optical registration system. This paper presents results of microcantilever modeling using finite element. The design of the polycrystalline silicon microcantilever was offered. It consists of the beam fixed on the one hand, a thickness of 2 µm, a width of 30 µm and a length of 95 µm. The probe with height of 15 µm, base radius 2 µm, and anapex radius 35 nm is located on the free side edge of the cantilever. The model takes into account a non-rectangular shape of the free edge of the cantilever that is formed during the probe fabrication. The thickness and width of the beam, the dimensions of the probe, material parameters were fixed. The results of the simulation of the cantilever length and the pressing force on the deflection and eigen frequencies were shown. The length and applied force varied from 60 to 300 µm and 0,05 to 1 µN, respectively. The dependence of the deflection on the applied force 0,05–1 µN at the fixed length of 95 µm, on the length of 60–120 µm at the fixed force of 50 nH, and the dependences of the first three eigen frequencies on the cantilever length were obtained. The results obtained in the work will allow to develop recommendations for the design of a microcantilever structure with high sensitivity.

Download PDF

Keywords Nanosystems; cantilever; beam deflection; monocrystalline silicon; polycrystalline silicon; atomic force microscopy.
References 1. Bhushan B. Springer Handbook of Nanotechnology. Heidelberg: Dordrecht: London: New York: Springer, 2010, 1964 p.
2. Mironov V.L. Osnovy skaniruyushchey zondovoy mikroskopii [Fundamentals of scanning probe microscopy]. Nizhny Novgorod: Institut fiziki mikrostruktur, 2004, pp. 15-68.
3. Binnig G., Quate C.F., Gerber Ch. Atomic force microscope, Jpn. Phys. Rev. Lett., 1986, Vol. 56, No. 9, pp. 930-933.
4. Bykov A.V. Konstruktivno-tekhnologicheskie osobennosti kantileverov dlya atomno-silovoy mikroskopii [Design and technology features cantilevers for atomic force microscopy], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 4 (153), pp.141-151.
5. Alekseev A.N., Sokolov I.A., Ageev O.A., Konoplev B.G. Kompleksnyy podkhod k
tekhnologicheskomu osnashcheniyu tsentra prikladnykh razrabotok. Opyt realizatsii v NOTs «Nanotekhnologii» YuFU [Comprehensive approach to technological equipping for R&D center. The experience in implementing of SEC «Nanotechnology» SFedU], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 4 (117), pp. 207-210.
6. Zhang G., Zhao L., Jiang Z.Surface stress-induced deflection of a microcantilever with various widths and overall microcantilever sensitivity enhancement via geometry modification, Journal of Physics D: Applied Physics, 2011, Vol. 44, pp. 425402.
7. Ansari M.Z., Cho C., Kim J. [et al.] Comparison between Deflection and Vibration Characteristics of Rectangular and Trapezoidal profile Microcantilevers, Sensors, 2009, Vol. 9, pp. 2706-2718.
8. Ansari M. Z., Cho C. A Study on Increasing Sensitivity of Rectangular Microcantilevers Used in Biosensors, Sensors, 2008, Vol. 8, pp. 7530-7544.
9. Gusev E.Yu., Gamaleev V.A., Mikhno A.S., Bykov A.V., ZhityaevaYu.Yu. Optimizatsiya konstruktsii kontaktno-metallizatsionnoy sistemy p'ezokantilevera dlya atomno-silovoy mikroskopii [Structural optimization of the contact system of the piezocantilever for atomic force microscopy], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 9 (158), pp. 158-165.
10. Konoplev B.G., Ageev O.A., Kolomiytsev A.S. Formirovanie nanorazmernykh struktur na kremnievoy podlozhke metodom fokusirovannykh ionnykh puchkov [The formation of nanosize structures on a silicon substrate using focused ion beams], Izvestiya vysshikh uchebnykh zavedeniy. Elektronika [Proceedings of universities. Electronics], 2011, No. 1 (87), pp. 29-34.
11. Konoplev B.G., Ageev O.A., Smirnov V.A., Kolomiytsev A.S., Il'in O.I. Modifikatsiya zondovykh datchikov-kantileverov dlya atomno-silovoy mikroskopii metodom fokusirovannykh ionnykh puchkov [Modification of the probe-cantilever for atomic force microscopy using focused ion beams], Nano- i mikrosistemnaya tekhnika [Nano and Microsystem Technique], 2011, No. 4, pp. 4-8.
12. Konoplev B.G., Ageev O.A., Smirnov V.A., Kolomiitsev A.S., Serbu N.I. Probe modification for scanning-probe microscopy by the focused ion beam method, Russian Microelectronics, 2012, Vol. 41, No. 1, pp. 41-50.
13. Payam A.F. Sensitivity of flexural vibration mode of the rectangular atomic force microscope micro cantilevers in liquid to the surface stiffness variations, Ultramicroscopy, 2013, No. 135, pp. 84-88.
14. Velichko R.V., Gusev E.Yu., Gamaleev V.A., Mikhno A.S., Bychkova A.S. Issledovanie rezhimov plazmokhimicheskogo osazhdeniya plenok nano- i polikristallicheskogo kremniya [The study of modes of plasma chemical deposition of nano- and polycrystalline silicon], Fundamental'nye issledovaniya [Fundamental Research], 2012, No. 11, pp. 1176-1179.
15. French P.J. Polysilicon: a versatile material for Microsystems, Sensors and actuators A Physical, 2002, Vol. 99, pp. 3-12.
16. Gere J.M., Timoshenko S.P. Mechanical of materials. Boston: PWS Pub Co, 1997, 912 p.
17. Yeh M-K, Tai N-H, Chen B-Y. Influence of Poissons ratio variation on lateral spring constant of atomic force microscopy cantilevers, Ultramicroscopy, 2008, No. 108, pp. 1025-1029.
18. Senturia S.D. Microsystem design. Kluwer academic publishers: New York: Boston: Dordrecht: London: Moscow, 2002, 689 p.
19. Anshu M.G., Dinesh S.R. Modelling and Eigen frequency analysis of piezoelectric cantilever beam, International Journal of Engineering Science, 2014, Vol. 3, No. 7, pp. 52-59.
20. Zhang Y., Murphy K.D. Static and Dynamic Structural Modeling Analysis of Atomic Force Microscope, Scanning Probe Microscopy in Nanoscience and Nanotechnology, 2009, pp. 225-257.
21. Shaik R.S., Sai V., Logesh S. Modelling and simulation of cantilever sensor using COMSOL Multiphysics, International Journal of engineering, technology, management and research. 2014, No. 1, pp. 6-8.
22. Ansari M.Z., Cho C., Kim J. Comparison between Deflection and Vibration Characteristics of Rectangular and Trapezoidal profile Microcantilevers // Sensors. – 2009. – № 9. – P. 2709-2718.

Comments are closed.