Article

Article title ANALYSIS OF A DESIGN OF LINEAR ACCELERATION SENSOR WITH THREE SENSITIVE AXIS
Authors I.E. Lysenko, O.A. Ezhova, F.M. Bondarev, A.V. Tkachenko
Section SECTION IV. NANOSYSTEMS ENGINEERING
Month, Year 09, 2015 @en
Index UDC 621.3.049.77
DOI
Abstract Today microsystem technique develops extensively. Devices of microsystem technique such as sensors of linear acceleration, sensors of angle velocity, actuators and other devices are widely used in various areas: space industry, medical technology, consumer devices, game consoles of new generation, automotive industry and etc. Various devices of microsystem technology have become increasingly visible in the healthcare market, because the microsystem technology serve as solutions adapted to the requirements of various applications. For example, MEMS sensors of linear acceleration are used in defibrillators and pacemakers. So there is a relevant objective to develop design of linear acceleration sensor. Main aims of micromechanical sensors developing are improvement basic performance characteristic, reducing weight and dimensional characteristics and space occupied by designed sensor on a wafer, as result reduction of value of the sensor. In this work design of linear acceleration sensor with three sensitive axes is created and analysed, modal analyses of the created sensor along three sensitive axes, natural mode and vibration frequency of the sensor design are calculated, simulation of performance of the created design under the influence of linear accelerations was realized, description of the sensor design was developed on high-level language VHDL-AMS. The results of the research show, that the elastic suspension design of the linear acceleration sensor sensing element provides equality of frequency along two axes.

Download PDF

Keywords Microsystems technologies; microelectromechanical systems; elements base; micromachined component; linear acceleration sensor; accelerometer; design; model; modeling.
References 1. Raspopov V.Ya. Mikromekhanicheskie pribory: uchebnoe posobie [Micromechanical devices: a training manual]. Tula: Tul'skiy gosudarstvennyy universitet, 2007, 400 p.
2. Ramadoss R. MEMS devices for biomedical applications, Solid State Technology, 2013, Vol. 10, pp. 10-13.
3. Sung W.T., Kang T. and Lee J.G. Controller Design of a MEMS Gyro-Accelerometer with a Single Proof Mass, International Journal of Control, Automation, and Systems, 2008, Issue 6, pp. 873-883.
4. Timoshenkov S.P., Kul'chitskiy A.P. Primenenie MEMS-sensorov v sistemakh navigatsii i orientatsii podvizhnykh ob"ektov [The use of MEMS sensors in navigation systems and orientation of moving objects], Nano- i mikrosistemnaya tekhnika [Nano and Microsystem Technique], 2012, No. 6, pp. 51-56.
5. Aravin V.V., Verner V.D., Saurov A.N., Mal'tsev P.P. MEMS vysokogo urovnya –
vozmozhnyy put' razvitiya MEMS v Rossii [MEMS high-level – possible way of development of MEMS in Russia], Nano- i mikrosistemnaya tekhnika [Nano and Microsystem Technique], 2011, No. 6, pp. 28-31.
6. Prokof'ev I.V., Tikhonov R.D. Nano- i mikrosistemy dlya monitoringa parametrov dvizheniya transportnykh sredstv [Nano - and Microsystems for monitoring of parameters of movement of vehicles], Nano- i mikrosistemnaya tekhnika [Nano and Microsystem Technique], 2011, No. 12, pp. 48-50.
7. Sysoeva S. Klyuchevye segmenty rynka MEMS-komponentov. Inertsial'nye sistemy – ot Low-End do High-End [Key market segments for the MEMS components. Inertial system – from Low-End to High-End], Komponenty i tekhnologii [Components & Technologies], 2010, No. 5.
8. Anchurin S.A., Maksimov V.N., Morozov E.S., Golovan' A.S., Shilov V.F. Blok inertsial'nykh datchikov [Unit inertial sensors], Nano- i mikrosistemnaya tekhnika [Nano and Microsystem Technique], 2011, No. 1, pp. 50-53.
9. Elwenspoek M., Wiegerink R. Silicon micro accelerometers, Mechanical microsensors, 2005, pp. 230-236.
10. Konoplev B.G., Ryndin E.A., Lysenko I.E. Elementnaya baza nanoelektroniki, mikro- i nanosistemnoy tekhniki [Element base of nanoelectronics, micro - and nanosystem technology]. Taganrog: Izd-vo TTI YuFU, 2007, 91 p.
11. Lysenko I.E. Modeling of the micromachined angular rate and linear acceleration sensors LL-type with redirect of drive and sense axis, World Applied Sciences Journal, 2013, No. 27 (6), pp. 759-762.
12. Lysenko I.E. Integral'nyy sensor uglovykh skorostey i lineynykh uskoreniy [ntegrated sensor of angular velocities and linear accelerations], Inzhenernyy vestnik Dona [Engineering journal of Don], 2010, No. 3. Available at: http://ivdon.ru/magazine/ (the access is free).
13. Lysenko I.E., Lysenko A.V. Integral'nye sensory uglovykh skorostey i lineynykh us-koreniy LR-tipa na osnove uglerodnykh nanotrubokurs [Integrated sensors of angular velocities and linear unit roots LR-type on the basis of carbon nanotrubok], Inzhenernyy vestnik Dona [Engineering journal of Don], 2012, No. 4. Available at: http://ivdon.ru/magazine/ (the access is free).
14. Lysenko I.E., Ezhova O.A. Kriterii ravenstva sobstvennykh chastot kolebaniy chuvstvitel'nykh elementov mikromekhanicheskikh giroskopov-akselerometrov [The criteria of equality of the natural frequencies of oscillations of a sensitive element of micromechanical gyroscopes-accelerometers], Inzhenernyy vestnik Dona [Engineering journal of Don], 2014, No. 2. Available at: http://ivdon.ru/ru/magazine/archive/n2y2014/2475 (the access is free).
15. Lysenko I.E., Sinyutin S.A., Voronkov O.Yu. Povedencheskaya model' mikromekhanicheskogo sensora uglovykh skorostey dlya modelirovaniya v srede Simulink programmnogo paketa MatLab [Behavioral model of a micromechanical sensor of angular velocity for the simulation in Simulink software package of MatLab], Inzhenernyy vestnik Dona [Engineering journal of Don], 2014, No. 4. Available at: http://ivdon.ru/ru/magazine/archive/N4y2014/2674/ (the access is free).
16. Lysenko I.E., Sinyutin S.A., Voronkov O.Yu. Razrabotka povedencheskoy modeli sensora lineynogo uskoreniya s dvumya osyami chuvstvitel'nosti dlya modelirovaniya v srede Simulink programmnogo paketa MatLab [Development of behavioral models of linear acceleration sensor with two axes of sensitivity for the simulation in Simulink software package of MatLab], Inzhenernyy vestnik Dona [Engineering journal of Don], 2014, No. 4. Available at: http://ivdon.ru/ru/magazine/archive/n4y2014/2672/ (the access is free).
17. Lysenko I.E. Integral'nye mikromekhanicheskie sensory uglovykh skorostey i lineynykh uskoreniy [Integrated micromechanical sensors of angular velocities and linear accelerations]. Taganrog: Izd-vo YuFU, 2013, 180 p.
18. Konoplev B.G., Ryndin E.A., Lysenko I.E. Elementnaya baza nanoelektroniki, mikro- i nanosistemnoy tekhniki [Element base of nanoelectronics, micro- and nanosystem technology]. Taganrog: Izd-vo TTI YuFU, 2007, 91 p.
19. Lysenko I.E. Metod proektirovaniya mikromekhanicheskikh sensorov uglovykh skorostey i lineynykh uskoreniy LL-tipa [Design method of micromachined gyroscope-accelerometer LL-type], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2009, No. 1 (90), pp. 117-123.
20. Lysenko I.E., Ezhova O.A., Kulikova I.V. Pristupchik N.K. Metodika proektirovaniya mikromekhanicheskikh komponentov na osnove biblioteki mikrofragmentov [Design method of micromechanical components based on the macros library], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 9 (158), pp. 201-205.

Comments are closed.