Article

Article title MICROFLUIDIC DEVICE FOR SEPARATION OF BIOLOGICAL LIQUIDS
Authors V.N. Vyazmitin, V.V. Polyakov
Section SECTION V. BIOMEDICAL NANOTECHNOLOGY
Month, Year 09, 2015 @en
Index UDC 621.38-022.532
DOI
Abstract The article provides the analysis of biological liquids in human organism and their properties. Describes contemporary methods of research and sampling samples for analysis, what the important by developing systems for personalized medicine. Revealed potential applications of microfluidics devices in modern systems of diagnostics and analysis, given description features and some parameters of blood corpuscles. Described the peculiarities and principles of construction of elements of microfluidic devices. Shown the relationship of the personalization of medicine and miniaturization of devices a modern micro- and nanotechnologies. Is noted that advanced system diagnostics and analysis are widely used microfluidics devices with chemical tests, cytometry, immunological analysis, clinical diagnostics and delivery of drugs in the body. This can be a variety of microchannels, micropumps, and inhalers, microreactors, etc. Dan calculation of the flow of fluid through the microchannels by a method of laminar flow. It is shown that laminar flow is possible only up to some critical value of the Reynolds number, after which it becomes turbulent. In addition, effect of hydrophobic and hydrophilic surfaces of microchannels was consider.By condition of "sticking" in microchannels of the fluid velocity is very small. Thus, the increase in speed requires a significant pressure, which can lead to the destruction of the channel. One of possible solution to this problem is the use of hydrophobic surfaces. In this case, for micro-fluidic devices on silicon, is used the oxidation of the surface of microchannels. The article stated that there are several ways of implementation of a system of channels on the chip: cross, double-T, double-L, double-cross, triple-T, multi-T, etc. Cross-system channel the most simple in realization and carrying out analyses. As an example, the realisation device for separation of biological liquids was shown example element formed by the method of local anodic oxidation. Was offer variant of the microfluidic device for separation of biological liquids.

Download PDF

Keywords Microfluidic devices; technology; micro; nanotechnology; biosensors; classification.
References 1. Polyakov V.V. Tekhnologicheskie aspekty i konstruktivnye osobennosti gibridnykh sensornykh sistem [Technological aspects and features of sensors hybrid systems], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 9 (158), pp. 7-14.
2. Lysenko I.E. Metod proektirovaniya dvukhosevykh mikromekhanicheskikh sensorov uglovykh skorostey i lineynykh uskoreniy RR-tipa [Design method of two-axis micromachined gyroscope-accelerometer RR-type], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 4 (117), pp. 234-236.
3. Lysenko I.E. Funktsional'no integrirovannye mikro- i nanomekhanicheskie sensory uglovykh skorostey i lineynykh uskoreniy [Functionally integrated micro - and nano-mechanical sensors of angular velocities and linear accelerations]. Taganrog: Izd-vo YuFU, 2013, 167 p.
4. Ageev O.A., Mamikonova V.M., Petrov V.V., Kotov V.N., Negodenko O.N. Mikroelektronnye preobrazovateli neelektricheskikh velichin [Microelectronic converters of non-electrical quantities]. Taganrog: Izd-vo TRTU, 2000, 153 p.
5. Ageev O.A., Sechenov D.A., Svetlichnyy A.M., Kasimov F.D., Kadymov G.G.
Gazochuvstvitel'nye datchiki na osnove karbida kremniya [Gas-sensitive sensors based on silicon carbide]. Baku: Izd-vo Mutardzhim, 2004, 92 p.
6. Pokrovskiy V.M., Korot'ko G.F. Fiziologiya cheloveka [Human physiology]. Moscow, 2003, 656 p.
7. Vorob'eva E.A., Gubar' A.V., Saf'yannikova E.B. Anatomiya i fiziologiya [Anatomy and physiology]. Moscow: Meditsina, 1988, 432 p.
8. Lipunova E.A., Skorkina M.Yu. Fiziologiya krovi: monogr. Issled [Blood physiology:
monogenea research]. Belgorod: Izd-vo BelGU, 2007, 324 p.
9. Shimojo N, Naka K, Nakajima C, Yoshikawa C, Okuda K, Okada K. Test-Strip Method for Measuring Lactate in Whole-Blood, Clinical Chemistry, 1989, Vol. 35, pp. 1992-1994.
10. Sechenov D.A., Svetlichnyy A.M., Polyakov V.V. Fotostimulirovannye tekhnologicheskie protsessy v kremnievykh strukturakh [Photostimulated processes in silicon structures]. Taganrog: TRTU, 2002, 103 p.
11. Ageev O.A., Alyabeva N.I., Konoplev B.G., Polyakov V.V., Smirnov V.A. Photoactivation of the processes of formation of nanostructures by local anodic oxidation of a titanium film, Semiconductors, 2010, Vol. 44, No. 13, pp. 1703-1708.
12. Chen J., Li J., Sun Y. Microfluidic approaches for cancer cell detection, characterization, and separation, Lab. Chip., 2012, Vol. 12, pp. 1753-1767.
13. Avilov V.I., Ageev O.A., Blinov Yu.F., Konoplev B.G., Polyakov V.V., Smirnov V.A., Tsukanova O.G. Simulation of the formation of nanosize oxide structures by local anode oxidation of the metal surface, Technical Physics, 2015, Vol. 60, No. 5, pp. 717-723.
14. Svetlichnyy A.M., Sechenov D.A., Burshteyn V.M., Brazhnik V.A., Polyakov V.V. Ustanovka impul'snoy termoobrabotki ITO-18M [The pulsed heat treatment of ITO-18M], Elektronnaya promyshlennost' [Electronic Industry], 1990, No. 3, pp. 62-64.
15. Sechenov D.A., Svetlichnyy A.M., Vorontsov L.V., Polyakov V.V., Burshteyn V.M., Solov'ev S.I., Ageev O.A. Vakuumnaya ustanovka impul'snoy termicheskoy obrabotki ITO-18MV [Vacuum unit of pulse thermal processing ITO-than 18mv], Elektronnaya promyshlennost' [Electronic Industry], 1991, No. 5, pp. 6-7.
16. Polyakov V.V., Vyazmitin V.N., Dmitriev A.N. Technological and design particularity of the hybrid sensors nano- and micro- systems, International conference on “Physics and mechanics of new materials and their applications” (PHENMA-2015) – Azov, Russia, May 19-22, 2015, pp. 188-189.
17. Avilov V.I., Ageev O.A., Blinov Yu.F., Konoplev B.G., Polyakov V.V., Smirnov V.A., Tsukanova O.G. Modelirovanie protsessa formirovaniya oksidnykh nanorazmernykh struktur metodom lokal'nogo anodnogo okisleniya poverkhnosti metalla [Modeling of process of formation of the oxide nano-structures by local anodic oxidation of metal surface], Zhurnal tekhnicheskoy fiziki [Journal of Technical Physics], 2015, Vol. 85, Issue 5, pp. 88-93.
18. Ageev A.O., Konoplev B.G., Polyakov V.V., Svetlichnyi A.M., Smirnov V.A. Photoassisted scanning-probe nanolithography on Ti films, Russian Microelectronics, 2007, Vol. 36, No. 6, pp. 353-357.
19. Svetlichnyy A.M., Polyakov V.V., Kocherov A.N. Okislenie karbida kremniya bystrym termicheskim otzhigom [Oxidation of SIC by rapid thermal annealing], Izvestiya TRTU [Izvestiya SFedU TSURe], 2004, No. 1 (36), pp. 104-105.
20. Polyakov V.V. Formation of nanosized elements of hybrid systems microfluidics on a silicon substrate, International Journal of Applied and Fundamental Research, 2014, No. 3. Available at: www.science-sd.com/458-24596.

Comments are closed.