Article

Article title CYBER-PHYSICAL OBJECT GROUPS CONTROL IN CLOUD COMPUTING ENVIRONMENT
Authors V.S. Zaborovsky, V.A. Muliukha, A.A. Lukashin, A.S. Ilyashenko
Section SECTION I. GROUP CONTROL ROBOTS
Month, Year 10, 2015 @en
Index UDC 004.75
DOI
Abstract The objective of this article is to develop the robotic groups control system, based on a combination of the principles of multi-agent systems functioning (autonomy, limited representation, decentralization) with the capabilities of the services provided by cloud computing technology. Robotic group is defined using an algebraic approach as a finite set carrier and set of operations and signatures. The control loop scheme of cyber-physical objects uses observing camera for positioning tasks. To determine the orientation of the robot in a space is used an approach based on specialized markers, also described in this article. The approach to the organization of the robots movement and conflict resolution to groups of robots is based on discrete algorithms of graph theory in combination with the use of virtual continuous "potential fields", to create dynamic limits for the path of the robot, as a group, and on the map as a whole. The paper describes in detail the process of calculating the values of "potential fields" and the process of calculating the trajectory of cyber-physical objects movement. A layered architecture cloud platform for control of cyber-physical objects groups on the basis of the "Pilgrim" system is constructed and shown. The basis of the developed platform is an actor approach. A notion of "avatar" is introduced as an actor functioning in the system and providing an interface for interacting with its corresponding cyber-physical object. For the organization of information interaction with the elements of cyber-physical objects’ groups is proposed to use the message queue model “Publisher / Subscriber”, which allows to organize guaranteed message delivery with the possibility for cyber-physical objects to "subscribe" for messages by specified topic. Proposed approach allows to transfer computational load from cyber-physical object to the cloud platform execution environment that will provide an almost unlimited amount of computing resources for robot and let increase the complexity of tasks for it.

Download PDF

Keywords Cyber-physics; robots control; cloud computing; big data; groups control.
References 1. Zaborovskiy V.S., Lukashin A.A., Mulyukha V.A. Platforma upravleniya kiberfizicheskimi ob"ektami [Management platform cyber-physical objects], Otkrytye sistemy. SUBD [Open systems. Databases], 2014, No. 9, pp. 30-32.
2. Popov E.V., Fridman G.R. Algoritmicheskie osnovy intellektual'nykh robotov i
iskusstvennogo intellekta: Monografiya [Algorithmic basics of intellectual robots and artificial intelligence: a Monograph]. Moscow: Nauka, 1976, 455 p.
3. Yurevich E.I. Upravlenie robotami i robototekhnicheskimi sistemami: Ucheb. dlya vuzov [The management of robots and robotic systems: Textbook for universities]. Saint-Petersburg: Izd-vo SPbGTU, 2001, 168 p.
4. Timofeev A.B. Intellektual'noe i mul'tiagentnoe upravlenie robototekhnicheskimi sistemami [Intelligent and multi-agent control of robotic systems], Ekstremal'naya robototekhnika: Mat. XI nauch.-tekhn. konf. [Extreme robotics: proceedings of the XI scientific and technical conference]. Saint-Petersburg: Izd-vo SP6GTU, 2001, pp. 9-16.
5. Wagner A.R., Arkin R.C. Internalized Plans for Communication-Sensitive Robot Team Behaviors, Proc. IEEE Inter. Conf. on Intelligent Robotics and Systems, 2003, pp. 2480-2487.
6. Derler P., Lee E.A. and Sangiovanni-Vincentelli A. Modeling Cyber-Physical Systems, Proceedings of the IEEE (special issue on CPS), 13-28, January 2012, No. 100 (1).
7. Kapustyan S.G. Metody i algoritmy kollektivnogo upravleniya robotami pri ikh gruppovom primenenii: dis. d-ra tekhn. nauk [Methods and algorithms of collective control robots with their group administration. Dr. eng. sc. diss.]: 05.02.05. Rostov-on-Don, 2008, 310 p.
8. Kalyaev I.A., Gayduk A.R., Kapustin S.G. Raspredelennye sistemy planirovaniya deystviy kollektivov robotov [Distributed systems planning teams of robots]. Moscow: Yanus-K, 2002, 291 p.
9. Chernyak L. Intellekt roya dlya IT [Swarm intelligence for IT], Otkrytye sistemy. SUBD [Open systems. Databases], 2014, No. 2, pp. 41-43. Available at: http://www.osp.ru/os/2014/02/13040047 (accessed 12 November 2015).
10. Zaborovskiy V.S., Lukashin A.A. Vysokoproizvoditel'naya zashchishchennaya oblachnaya sreda [High-performance secure cloud environment], Otkrytye sistemy. SUBD [Open systems. Databases], 2013, No. 6, pp. 10-13. Available at: http://www.osp.ru/os/2013/06/13036845 (accessed 12 November 2015).
11. Hewitt C., Bishop P., Steiger R. Proceeding IJCAI'73 Proceedings of the 3rd international joint conference on Artificial intelligence, 1973, pp. 235-245.
12. Marakhovskiy V.B., Rozenblyum L.Ya., Yakovlev A.V. Modelirovanie parallel'nykh protses-sov. Seti Petri. Kurs dlya sistemnykh arkhitektorov, programmistov, sistemnykh analitikov, proektirovshchikov slozhnykh sistem upravleniya [Modeling of parallel processes. Petri Nets. Course for system architects, programmers, system analysts, designers of complex control systems]. Saint-Petersburg: Professional'naya lite-ratura, AyTi-Podgotovka, 2014, 400 p.
13. Lamprecht Gьnther. Introduction to SIMULA 67, 1983, Vieweg+Teubner Verlag, ISBN 978-3-528-13340-5, DOI 10.1007/978-3-322-89739-8, 202 p.
14. Carl Hewitt. The repeated demise of logic programming and why it will be reincarnated What Went Wrong and Why: Lessons from AI Research and Applications. Technical Report SS-06-08. AAAI Press. March 2006.
15. Carl Hewitt. ORGs for Scalable, Robust, Privacy-Friendly Client Cloud Computing, IEEE Internet Computting, September–October 2008, Vol. 12, No. 5, pp. 96-99.
16. Burdakov S.F., Miroshnik I.V., Stel'makov R.E. Sistemy upravleniya dvizheniem kolesnykh robotov [The motion control system of wheeled robots]. Saint-Petersburg: Nauka, 2001, 227 p.
17. Kalyaev I.A., Ga duk A.R., Kapustyan S.G. Raspredelennye sistemy planirovaniya deystviy kollektivov robotov [Distributed systems planning teams of robots]. Moscow: Yanus-K, 2002, 292 p.
18. Luna R., Bekris K.E. Efficient and complete centralized multi-robot path planning, Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on. IEEE, 2011, pp. 3268-3275.
19. Kupriyanov V.E., Vasil'ev A.Yu. Grubye sistemy upravleniya. Sintez sistem upravleniya po vykhodu: ucheb. posobie [Coarse control system. The synthesis of control systems output: a tutorial]. Saint-Petersburg: Izd-vo Politekhn. un-ta, 2012, 83 p.
20. Kurochkin M., Glazunov V., Kurochkin L. and Popov S. Instrumental environment of multi-protocol cloud-oriented vehicular mesh network, In 10th International Conference on Informatics in Control, Automation and Robotics (ICINCO), 2013.
21. Zaborovskiy V.S., Mulyukha V.A., Pashkin M.P., Popov S.G. Cetetsentricheskie algoritmy upravleniya dlya telematicheskikh servisov tolerantnykh k zaderzhkam [Network-centric control algorithms for telematic services tolerant to delays], Trudy SPIIRAN [Proceedings of SPIIRAS], 2013, Issie 8 (31), pp. 163-176.

Comments are closed.