Article

Article title THE SUPPORT SYSTEM FOR DESIGN OF AUV INTEGRATED CONTROL SYSTEM ALGORITHMS
Authors L.A. Martynova, A.I. Mashoshin, I.V. Pashkevich
Section SECTION V. UNDERWATER ROBOTICS
Month, Year 10, 2015 @en
Index UDC 629.58:629.5.05
DOI
Abstract The aim of the work was to create a software system (SS) for the following tasks: design autonomous unmanned vehicle (AUV) control system (CS) software; training interaction between CS components (agents); modeling the work of the CS; evaluating the performance of the AUV CS on each stage of the mission. Designed SS is a working place for the algorithms and program designer of the CS built on the basis of multi-agent technology. According to this technology AUV CS consists of the intelligent agents set, united in the task subsystems: social, conference, deliberative, perception, drive, auxiliary. The management of AUV is carried out by agents interaction within each group and between groups. The main agents are listed below: in the social subsystem: the "interface" agent; in the conference subsystem: "mission planning", "path planning", "localization", "charger" agents; in the perception subsystem: "encoder", "observer", "sensor battery" agents; in the behavior subsystem: "go", "bypass", "pass" agents; in the drive subsystem: "motion control" agent; in the auxiliary subsystem: "manager", "monitor", "awakening" Agents. The article describes the interaction between agents and ways to resolve conflicts that arise when several agents try to use the same resource at one time. As an example it is shown how the conflict between agents "bypass", "go" and "pass" resolves. Resolving of the conflict is achieved by taking into account the value of utility of each agent. Agent having the highest utility is entitled to make decision and perform management. It is shown how the utility of different agents changes during the mission movement.

Download PDF

Keywords Underwater robot; autonomous unmanned vehicle; agent; multi-agent technology.
References 1. Avtonomnye podvodnye roboty. Sistemy i tekhnologii [Autonomous underwater robots. Systems and technologie], ed. by Ageeva M.D. Moscow: Nauka, 2005, 398 c.
2. Illarionov G.Yu., Sidenko K.S., Bocharov L.Yu. Ugroza iz glubiny: XXI vek [The threat from the deep: XXI century]. Khabarovsk: KGUP "Khabarovskaya kraevaya tipografiya", 2011, 304 p.
3. Belousov I. Sovremennye i perspektivnye neobitaemye podvodnye apparaty VMS SShA [Modern and perspective unmanned underwater vehicles, U.S. Navy], Zarubezhnoe voennoe obozrenie [Foreign Military Review], 2013, No. 5, pp. 79-88.
4. Inzartsev A.V. i dr. Primenenie avtonomnogo neobitaemogo podvodnogo apparata dlya nauchnykh issledovaniy v Arktike [The application of Autonomous underwater vehicle for scientific research in the Arctic], Podvodnye issledovaniya i robototekhnika [Underwater Researches and Robotics], 2007, No. 2 (4), pp. 5-14.
5. Gizitdinova M.R., Kuz'mitskiy M.A. Mobil'nye podvodnye roboty v sovremennoy okeanografii i gidrofizike [Mobile underwater robots in modern Oceanography and gidrofizike], Fundamental'naya i prikladnaya gidrofizika [Fundamentalnaya I Prilkadnaya Gidrofizika], 2010, Vol. 3, No. 1, pp. 4-13.
6. Bozhenov Yu.A. Ispol'zovanie avtonomnykh neobitaemykh podvodnykh apparatov dlya issledovaniya Arktiki i Antarktiki [The use of Autonomous underwater vehicles for research of the Arctic and Antarctic], Fundamental'naya i prikladnaya gidrofizika [Fundamentalnaya I Prilkadnaya Gidrofizika], 2011, Vol. 4, No. 1, pp. 4-68.
7. Millar G., Mackay L. Maneuvering under the ice, Sea technology, 2015, Vol. 56, No. 4, pp. 35-38.
8. Martynova L.A., Mashoshin A.I., Pashkevich I.V., Sokolov A.I. Integrirovannaya sistema upravleniya avtonomnogo neobitaemogo podvodnogo apparata [Integrated system management mA Autonomous underwater vehicle], Materialy 8-y Vserossiyskoy mul'tikonferentsii po problemam upravleniya, Divnomorskoe, 28 sentyabrya – 3 oktyabrya 2015 g. [proceedings of 8-th All-Russian multiconference on control problems, Divnomorskoye, September 28 – October 3, 2015], Vol. 3, pp. 191-193.
9. Gorodetskiy V.I., Grushinskiy M.S., Khabalov A.V. Mnogoagentnye sistemy (obzor) [Multi-agent systems (review)], Novosti iskusstvennogo intellekta [AI News Newsletter], 1998, No. 2, pp. 64-116.
10. Rzhevskiy G.A., Skobelev P.O. Kak upravlyat' slozhnymi sistemami? Mul'tiagentnye tekhnologii dlya sozdaniya intellektual'nykh sistem upravleniya predpriyatiyami [.How to manage complex systems? Multi-agent technologies for creating intelligent management systems for enterprises]. Samara: Ofort, 2015, 290 p.
11. Innocenti B. A multi-agent architecture with distributed coordination for an autonomous robot. Ph.D. dissertation –Universitat de Girona, 2009.
12. Ermolov I.L. Rasshirenie funktsional'nykh vozmozhnostey mobil'nykh tekhnologicheskikh robotov putem povysheniya urovnya ikh avtonomnosti s ispol'zovaniem ierarkhicheskoy kompleksnoy obrabotki bortovykh dannykh. Dis. d-ra tekhn. nauk [Expanding the functionality of mobile technological robots by increasing their level of autonomy using a hierarchical integrated processing of airborne data. Dr. eng. sc.], 2012, 350 p.
13. GOST R ISO 8373-2014. Roboty i robototekhnicheskie ustroystva. Terminy i opredeleniya [State Standard R ISO 8373-2014. Robots and robotic devices. The terms and the definition, 33 p.
14. Giret A., Botti V. Towards an abstract recursive agent, Integrated Computer-Aided Engineering, 2004, No. 11 (2), pp. 165-177.
15. Marik V., Flether M., Pechoucek M. Holons and agents: Recent developments and mutual impacts. Multi-Agent-Systems and Applications II. 9th ECCAI-ACAI/EASSS 2001, AEMAS 2001, HoloMAS 2001. Lecture Notes in Computert Science, 2003, pp. 233-267.
16. Fisher K., Schillo M., Siekmann J. Holonic multiagent system: A foundation for the organisation of multiagent system, Holonic and Multi-Agent System for Manufacturing. Lecture Notes in Computer Science, 2004, 2744/2004, pp. 71-80.
17. Soh L.K. Tsatsoulis C. A real-time negotiation model and a multi-agent sensor network implementation, Autonomous Agents and Multi-Agent Systems, November, 2005, pp. 215-271.
18. De Wolf T. Panel discussion on engineering self-organising emergence. 2007. SASO, 2007, 10-07-2007, MIT, Boston/Cambridge, MA. Available at: http://www.cs.kuleuveen.be/~tomdw presentations/presentation-SASOpanel2007.ppt.
19. Fromm J. On engineering and emergence. SACS|06, Workshop on Adaptation and Self-Organizing System (nlin.AO), arXiv:nlin/0601002v1 [nlin.AO], 2006.
20. De Wolf T., Holvoet T. Using UML 2 activity diagrams to design information flows and feed-back-loops in self-organising emergent system, Processing of the Second International Work-shop on Engineering Emergence in Decentralised Autonomic Systems (EEDAS 2007), 2007, pp. 52-61.
21. Deloach S.A. Analysis and design using MaSE and agent tool, Proceedings of the 12th Midwest Artificial Intelligence and Cognitive Science Conference (MAICS 2001), 2001, pp. 1-7.
22. Wood M.F., DeLoach S.A. An overview of the multiagent systems engineering methodology, Lecture Notes in Computer Science. Springer Verlag, 2000, Vol. 1957/2001, pp. 207-221.
23. Silva A., Delgado J. The agent pattern: A design pattern for dynamic and distributed applications. Procceedings of the EuroPLo’98. Third European Conference on Pattern Languages of Programming and Computing, Irsee, Germany, 1998.
24. Tahara Y., Ohsuga A., Honiden S. Agent system development method based on agent patterns. ICSE’99, Proceedings of the 21st international conference on Software engineering, 1999, pp. 356-367.
25. Garcia R., Cufi X., Carreras M. Estimating the motion of an underwater robot from a monocular image sequence, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2001, No. 3, pp. 1682-1687.

Comments are closed.