Article

Article title MODELING OF SIGNAL COMPOSITION IN A ONEDIMENSIONAL ELECTRONIC CIRCUIT
Authors P.Yu. Voloshchenko, Yu.P. Voloshchenko, S.B. Malkov
Section SECTION I. METHODS AND ALGORITHMS FOR SIGNAL PROCESSIN
Month, Year 11, 2015 @en
Index UDC 521.3.01
DOI
Abstract An analytical study of wave composition in a distributed parameter electronic circuit through methods of equivalent circuits, equivalent sine wave and complex amplitude, nodal-pair and active one-port, Kirchhoff laws and Tellegen theorem is carried out. It models electric and nonlinear electronic interacting processes of a microstrip uniform electromagnetic field and charge carriers in two microwave semiconductor devices. Consider that its geometrical configuration and environment properties remain invariable along the longitudinal coordinate. The excitement of connecting line with unknown impedance of the semiconductor device by ideal power source we illustrate simultaneously by the schemes of the one-port quadripole with distributed nonlinear parameters, nonreciprocal transmission quadripole and the equivalent two-wire transmission line loaded with a resistive negatron nonlinear element. In the symbolical analysis of electromagnetic waves diffraction by semiconductor devices the input and transfer complex frequency characteristics of one-dimensional electronic circuit is characterized by S-and A - parameters, the standing waves solution of Helmholtz equations depending on impact intensity, negatron operating mode and voltage and current wave front phase speed in it. It is shown that boundary conditions at the beginning and end of analyzed long line with nonlinear element depends on impact intensity and delayed reaction, signal overlapping interference phenomenon. The coherent wave transformation laws are analyzed using the example of idealized quarter wave line loaded with resistance-negatron two-terminal element. Its parameters providing a traveling-wave mode and a one-way oscillatory energy transmission between semiconductor devices are defined.

Download PDF

Keywords A long line; a resistance-negatron nonlinear element; the theory of distributed parameter electronic circuit.
References 1. Voloshchenko P.Yu., Voloshchenko Yu.P. Metodologiya matematicheskogo modelirovaniya nelineynykh volnovykh i kolebatel'nykh elektricheskikh protsessov v izdeliyakh kogerentnoy radio-, mikro- i nanoelektroniki [The methodology of mathematical modeling of nonlinear
nonlinear linear wave and oscillatory electrical processes in the coherent products of radio-, micro- and nanoelectronics]. Taganrog: Izd-vo YuFU, 2013, 110 p.
2. Voloshchenko P.Yu., Voloshchenko Yu.P. Osnovy sistemnogo modelirovaniya elektricheskoy struktury integratsii sverkhbystrodeystvuyushchikh elektronnykh priborov [Basics of system
modeling electrical structure of the integration ultrafast electronic devices]. Rostov-on-Don: Izd-vo YuFU, 2014, 94 p.
3. Voloshchenko P.Yu. Analiz transformatsii amplitudy voln nelineynym elementom, razmeshchennym v dlinnoy linii [The analysis of the transformation amplitude waves non-linear element, aligned in a long line of], Izvestiya vuzov. Elektromekhanika [Russian Electromechanics], 2010, No. 4, pp. 3-5.
4. Voloshchenko P.Yu. Obrashchennyy analiz elektromagnitnykh protsessov v dlinnoy linii s aktivnym nelineynym elementom [The inverted analysis of electromagnetic processes in a long line with an active nonlinear element], Izvestiya vuzov. Elektromekhanika [Russian Electromechanics], 2010, No. 6, pp. 21-24.
5. Bakhvalov Yu.A., Gorbatenko N.I., Grechikhin V.V. Obratnye zadachi elektrotekhniki [The inverse problem of electrical engineering], Izvestiya vuzov. Elektromekhanika [Russian Electromechanics], 2014, 211 p.
6. Voloshchenko Yu.P. Algoritmy analiza volnovykh protsessov v dlinnoy linii s aktivnymi nelineynymi dvukhpolyusnikami: avtoreferat: dis. ... kand. tekhn. nauk [Algorithms for the analysis of wave processes in long line with an active nonlinear two-terminal: abstract: Cand. of eng. sc. diss.] 05.09.05. Novocherkassk, 2009, 20 p. Available at: http://elibrary.ru/item.asp?id=19204803.
7. Voloshchenko P.Yu., Voloshchenko Yu.P. Modelirovanie elektricheskogo polya fragmenta sverkhskorostnoy integral'noy skhemy [Modeling of the electric field of the fragment ultrafast integrated circuits], Nelineynyy mir [Nonlinear World], 2007, No. 10‒11, pp. 689-696.
8. Neyman L.R., Demirchyan K.S. Teoreticheskie osnovy elektrotekhniki [Fundamentals of electrical engineering]. Moscow–Leningrad: Energiya, 1966, Vol. 1, 522 p.; Vol. 2, 408 p.
9. Zernov N.V., Karpov V.G. Teoriya radiotekhnicheskikh tsepey [The theory of radio circuits]. Leningrad: Energiya, 1972, 816 p.
10. Popov V.P. Osnovy teorii tsepey [Fundamentals of theory of circuits]. Moscow: Vysshaya shkola, 1985, 496 p.
11. Nikol'skiy V.V. Elektrodinamika i rasprostranenie radiovoln [Electrodynamics and wave propagation]. Moscow: Nauka, 1978, 544 p.
12. Lebedev I.V. Tekhnika i pribory SVCh [Appliances and microwave devices], Ed. by N.D. Devyatkova. Moscow: Vysshaya shkola, 1970, 440 p.
13. Baskakov S.I. Radiotekhnicheskie tsepi s raspredelennymi parametrami [Radio technical chains with distributed parameters]. Moscow: Vysshaya shkola, 1980, 152 p.
14. Basan S.N. Osnovnye teoremy teorii lineynykh skhem zameshcheniya elektricheskikh i elektronnykh tsepey [Basic theorems of the theory of linear electrical circuits and electronic circuits]. Taganrog: TRTU, 1994, 109 p.
15. Davis W. Alan. Microwave semiconductor circuit design. New York: Van Nostrand Reinhold Company Inc. 1984, 415 p.
16. Andreev V.S. Teoriya nelineynykh elektricheskikh tsepey [The theory of nonlinear electrical circuits]. Moscow: Radio i svyaz', 1983, 280 p.
17. Vendelin G.D., Pavio A.M., Rohde U.L. Microwave Circuit Design Using Linear and Nonlinear Techniques. Hoboken, New Jersey: John Wiley & Sons, Inc, 2005, 1058 p.
18. Maas S.A. Nonlinear Microwave and RF Circuits. Norwood, МА: Artech House, 2003, 582 р.
19. Srivastava G.P., Gupta V.L. Microwave devices and circuit design. Delhi: PHI Learning Pvt. Ltd., 2006, 480 p.
20. Snowden C.M., Miles R.E. Compound Semiconductor Device Modelling. Berlin: Springer Science & Business Media, 1993, 286 p.
21. Kurokawa K. An Introduction to the Theory of Microwave Circuits. London: Academic Press, 1969, 446 p.
22. Pivnev V.V., Basan S.N., Voloshchenko Y.P. The Application of Approximation Characteristics Non-Linear Resistor Implement the Required Current-Voltage Characteristics, Proceedings of International Conference on Advances in Energy, Environment and Chemical Engineering (AEECE 2015), The proceedings series Advances in Engineering Research (AER) (ISSN 2352-
5401) Amsterdam-Beijing-Paris:Atlantis Press, 2015. Available at: http://dx.doi.org/10.2991/aeece-15.2015.2.
23. Alexander C., Sadiku M. Fundamentals of Electric Circuits. Columbus, OH: McGraw-Hill Science, 2008, 935 p.
24. GOST 19880-74. Elektrotekhnika. Osnovnye ponyatiya. Terminy i opredeleniya [State Standard 19880-74. Electrical engineering. Basic concepts. Terms and definitions]. Moscow: Izd-vo standartov, 1974, 34 p.
25. GOST R 52161.1-2004. Bezopasnost' bytovykh i analogichnykh elektricheskikh priborov [State Standard R 52161.1-2004. Safety of household and similar electrical appliances]. Moscow: IPK Izd-vo standartov, 2004, 96 p.
26. GOST R MEK 60745-1‒2005. Mashiny ruchnye elektricheskie. Bezopasnost' i metody ispytaniy [State Standard R MEK 60745-1‒2005. Machines manual electric. Safety and test methods]. Moscow: Standartinform, 2006, 89 p.

Comments are closed.