Article

Article title INCREASING SPECTRAL EFFICIENCY CHANNEL IN WIRELESS COMMUNICATION SYSTEMS 5G BASED MASSIVE MIMO SYSTEMS
Authors H.Е.A. Mahyoub, N.N. Kisel, S.G. Grishchenko
Section SECTION II. MATHEMATICAL MODELING OF PHYSICAL PROCESSES AND DEVICES
Month, Year 11, 2015 @en
Index UDC 629.7.028.6
DOI
Abstract In this paper the model of communication channel with non-ideal hardware has been considered that uses massive MIMO systems at the base stations, and a small antenna in user equipment. In the paper the research of the model of communication channel massive MIMO with non-ideal hardware at the base stations and in user equipment for the communication system of the 5th generation had been performed and the capacity and channel estimation accuracy for systems channel massive MIMO with non-ideal hardware at the base stations and in user equipment had been analyzed using MatLab. The used model of communication channel takes into account the distortion of equipment on each antenna using distorting additive noise proportional to the signal power at this antenna. The source data for the analysis of spectral efficiency of communication channel are the number of antennas at the REF, the levels of distortion equipment base stations and user equipment, the correlation coefficient between adjacent antennas, signal/noise ratio, the duration of the pilot signal, time modeling and time step and transmitter power. The fulfilled analysis showed that the use of massive MIMO in wireless network 5G allows to achieve a relatively high spectral efficiency and energy efficiency. It is shown that the distortion parameters and characteristics of hardware influence the channel estimation accuracy and limit the bandwidth of each user terminal for uplink and downlink communication lines. By increasing the number of antennas at the base stations can be reduce the requirements to the quality of the base station equipment. Distortions in the user equipment limit the channel capacity by increasing the number of N antennas of base stations.

Download PDF

Keywords Communication channel; massive MIMO systems; base station.
References 1. Wikimedia. 5G. Available at: http://en.wikipedia.org/wiki/5G.
2. 5G radio access, Ericsson White paper, July 2013.
3. Skrynnikov V.G. Budushchiy oblik 5G [The future face of 5G], Elektrosvyaz' [Electrosvyaz], 2013, No. 10.
4. Panychev A.I. Analiz rasprostraneniya signalov MIMO-sistemy v usloviyakh ogranichen-nogo prostranstva [The propagation of signals in MIMO-system in the limited leg space], Rasseyanie elektromagnitnykh voln: Mezhved. sb. nauch.-tekhn. statey [Scattering of electromagnetic waves: Interdepartmental collection of scientific and technical articles]. Vol. 16. Taganrog: Izd-vo TTI YuFU, 2010, pp. 5-12.
5. Panychev A.I. Trassirovka mnogoluchevogo rasprostraneniya radiovoln vnutri zdaniy [Tracing multipath propagation of radio waves inside buildings], Voprosy spetsial'noy radioelektroniki. Seriya «Obshchie voprosy radioelektroniki (OVR)». Nauchn.-tekhn. sbornik [Questions of special radio electronics. A series of "General questions of radio electronics (IDW)". Nauchno-technical collection]. Issue 1. Moscow-Taganrog, 2012, pp. 182-187.
6. Panychev A.I. Algoritm trekhmernoy trassirovki radiovoln lokal'noy besprovodnoy seti [The algorithm of three-dimensional trace radio waves wireless lan], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 11 (136), pp. 31-41.
7. Panychev A.I., Dubinskaya I.V. Sintez luchevoy traektorii proniknoveniya signalov WLAN v smezhnye pomeshcheniya [Synthesis of ray trajectory penetration WLAN signals in adjacent rooms], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 5 (142), pp. 116-122.
8. Panychev A.I. Uchet polyarizatsionnykh effektov v kanale sistemy WLAN [Accounting for polarization effects in the WLAN system channel], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 5 (142), pp. 215-220.
9. Panychev A.I., Dubinskaya I.V. Analiz intensivnosti signalov lokal'noy besprovodnoy seti svyazi v smezhnykh pomeshcheniyakh [Analysis of the wireless local area network signals intensity in adjacent rooms], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 11 (148), pp. 44-50.
10. Panychev A.I. Trekhmernoe modelirovanie zony radiopokrytiya WLAN v pomeshchenii [Three-dimensional modeling of radio coverage WLAN in the room], Tekhnika radiosvyazi: Nauchno-tekhnicheskiy sbornik [Radio Technique: Scientific-technical collection], 2014, Issue 2 (22), pp. 23-32.
11. Panychev A.I. Uchet polyarizatsionnykh effektov v kanal'noy matritse lokal'noy MIMO-sistemy [Accounting for polarization effects in the channel matrix local MIMO systems], [Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 11 (160), pp. 86-93.
12. Panychev A.I., Vaganova A.A. Three-dimensional Tracing of WLAN Signals Between Rooms, 25-ya Mezhdunarodnaya Krymskaya konferentsiya «SVCh-tekhnika i telekommunikatsionnye tekhnologii» (KryMiKo’2015). Sevastopol', 6-12 sentyabrya 2015 g.: Materialy konf. v 2 t. [25-th international Crimean conference "microwave equipment and telecommunication technologies" (CriMiCo'2015). Sevastopol, September 6-12, 2015: conference Materials in 2 volumes]. Sevastopol', 2015. Vol. 1, pp. 211-212.
13. Rusek F., Persson D., Lau B., E. Larsson, Marzetta T., Edfors O., Ufvesson F. Scaling up MIMO: Opportunities and challenges with very large arrays, IEEE Signal Process., 2013, Vol. 30, No. 1, pp. 40-60.
14. Bjornson E., Hoydis J., Kountouris M. Massive MIMO systems with non-ideal hardware: energy efficiency, estimation, and capacity limits, IEEE journal on Selected Areas in Communications, 2014, No. 9.
15. Studer C., Wenk M., and Burg A. MIMO transmission with residual transmit-RF impairments, in Proc. ITG IEEE Workshop on Smart Antennas (WSA), 2010.
16. Wenk M. MIMO-OFDM Testbed: Challenges, Implementations, and Measurement Results, ser. Series in microelectronics. Hartung-Gorre, 2010.
17. Holma and A. Toskala. LTE for UMTS: Evolution to LTE-Advanced, 2nd ed. Wiley, 2011.
18. Hassibi B., Hochwald B. How much training is needed in multiple antenna wireless links?, IEEE Trans. Inf. Theory, 2003, Vol. 49, No. 4, pp. 951–963.
19. Couillet R., Debbah M. Random matrix methods for wireless communications. Cambridge University Press, 2011.
20. Ngo H., Larsson E., Marzetta T. Energy and spectral efficiency of very large multiuser MIMO systems, IEEE Trans. Commun., 2013, Vol. 61, No. 4, pp. 1436-1449.
21. Jose J., Ashikhmin A., Marzetta T., Vishwanath S. Pilot contamination and precoding in multicell TDD systems, IEEE Trans.Commun., 2011, Vol. 10, No. 8, pp. 2640-2651.
22. Khamed M., Kisel' N.N. Modelirovanie kharakteristik mikropoloskovoy antennoy reshetki S-diapazona [Modeling of characteristics of microstrip antenna array S-band], Sbornik nauchnykh trudov po itogam Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Novye tekhnologii i problemy tekhnicheskikh nauk». Innovatsionnyy tsentr razvitiya obrazovaniya i
nauki. g. Krasnoyarsk, 2014 [Collection of scientific works to the International scientific-practical conference "New technologies and problems of technical Sciences". Innovation center for the development of education and science. Krasnoyarsk, 2014], pp. 121-124.
23. Hoydis J., Ten Brink S., Debbah M. Massive MIMO in the UL/DL of cellular networks: How many antennas do we need?, IEEE J. Sel. Areas Commun., 2013, Vol. 31, No. 2, pp. 160-171.
24. Pitarokoilis A., Mohammed S., Larsson E. Uplink performance of time-reversal MRC in massive MIMO systems subject to phase noise // IEEE Trans. Wireless Commun., submitted.
25. Bjornson E., Kountouris M., Debbah M. Massive MIMO and small cells: Improving energy efficiency by optimal soft-cell coordination, in Proc. Int. Conf. Telecommun. (ICT), 2013.
26. Zhang W. A general framework for transmission with transceiver distortion and some applications, IEEE Trans. Commun., 2012, Vol. 60, No. 2, pp. 384-399.
27. Huh H., Caire G., Papadopoulos H., Ramprashad S. Achieving “massive MIMO” spectral efficiency with a not-so-large number of antennas, IEEE Trans. Wireless Commun., 2012, Vol. 11, No. 9, pp. 3226-3239.
28. Kisel' N.N., Grishchenko S.G., Derachits D.S. Issledovanie nizkoprofil'nykh konformnykh mikropoloskovykh antenn [Study conformal low-profile patch antenna], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 3 (164), pp. 240-248.

Comments are closed.