Article

Article title DEFINITION OF SCATTERING CENTERS OF COMPLEX MULTYLAYERED STRUCTURES
Authors S.G. Grishchenko, N.N. Kisel
Section SECTION II. MATHEMATICAL MODELING OF PHYSICAL PROCESSES AND DEVICES
Month, Year 11, 2015 @en
Index UDC 621.371.332.4
DOI
Abstract Radar and communication problems of electromagnetic scattering by multilayer objects placed on boundary (up boundary or under boundary) are very important. Original algorithm improving classic ray methods of multilayer media electromagnetic analysis is developed. The modify method of geometrical optics is used to solve the problem. Ray tracing in a multilayered media model are presented by directed segments, each of which has a geometric path of the ray between the two neighboring boundaries. The original recurrent algorithm of determination of rays multiply reflected between boundaries of the multilayered media and scattering in the interest direction is created and tested. In this paper the model of the underlying surface is presented as the plane-layered half-space, the roughness of the interfaces which satisfies the Raleigh criterion. A description of that method including some details about multilayered media such as structure material lossings, multireflected in structure rays and curvature of front of incident wave are presented. The modify optical algorithm is more efficient than a classic ray method for analyzing arbitrarily shaped objects. Results for three-dimensional problems involving arbitrary shaped bodies of revolution structures have demonstrated the validity of the modify optical algorithm. Numerical analysis of layered arbitrary shaped body of revolution, located in free space and on underlying surfaces is carried out in the paper. Definition of scattering centers of complex multi-layered structures is discussed.

Download PDF

Keywords Scattering of electromagnetic waves; optical ray tracing; multilayered media; complex multilayered scatterer; body of revolution; arbitrarily curved boundary; recurrent algorithm
References 1. Grishchenko S.G., Kisel' N.N, Tkacheva A.S. Elektrodinamicheskie modeli rasseivateley, nakhodyashchikhsya vblizi ploskoy granitsy razdela sred [Electrodynamic model of the lens close to the flat border of section of environments], Trudy Mezhdunarodnoy nauchnoy konferentsii «Izluchenie i rasseyanie elektromagnitnykh voln» IREMV-2011 [Proceedings of International scientific conference "Radiation and scattering of electromagnetic waves" IREPS-2011]. Taganrog: TTI YuFU, 2011, pp. 209-213.
2. Born M., Vol'f E. Osnovy optiki [Principles of optics]. Moscow: Nauka, 1970, 855 p.
3. Brekhovskikh L.M. Volny v sloistykh sredakh [Waves in layered media]. Moscow: Nauka, 1973, 343 p.
4. Bautin A.V. i dr. O vychislenii koeffitsientov otrazheniya i prokhozhdeniya radiovoln cherez ploskosloistuyu sredu [On calculation of coefficients of reflection and propagation of radio waves through a plane layered medium], Radiotekhnika i elektronika [Journal of Communications Technology and Electronics], 1976, Vol. 21, No. 2, pp. 382-385.
5. Kolychev S.A. K voprosu ob otrazhenii elektromagnitnykh voln ot mnogosloynykh ploskikh ekranov [The problem of reflection of electromagnetic waves from multilayer flat screens], Antenny [Antennas], 2007, No. 8, pp. 3-6.
6. Kolychev S.A. Vozmozhnost' ispol'zovaniya pryamykh rekurrentnykh sootnosheniy dlya koeffitsientov otrazheniya i pronitsaemosti voln pri reshenii zadach vozbuzhdeniya ploskosloistoy sredy [The possibility of using direct recursion relations for co-efficient reflection and permeability of the waves in the solution of problems of excitation of plane colaiste environment], Antenny [Antennas], 2012, No. 2. pp. 76-83.
7. Deschamp G.A. Ray Techniques in electromagnetic, Proс. IEEE, 1972, Vol. 60, No. 9, pp. 5-20.
8. Mal'tsev N.E. Primenenie printsipa Ferma dlya raschetov geometroakusticheskikh luchey v volnovodakh peremennogo secheniya [The application of Fermat's principle for the calculation geometricprecision rays in waveguides of variable cross-section], Teoriya difraktsii i rasprostraneniya radiovoln (6 Vsesoyuznyy simpozium) [In the book: Theory of diffraction and radio wave propagation (6 all-Union Symposium)]. Moscow: Izd-vo AN SSSR, 1973, Vol. 2, pp. 122.
9. Peters L., Каwanо Т., Swarner W.G. Approximations for dielectric or plazma scatterers, Proc. IEEE, 1965, Vol. 53, No. 8, pp. 1013-1025.
10. Hyeondong Kim, Hao Ling. Electromagnetic scattering from an inhomogeneous object by ray tracing, IEEE Trans. Antennas and Propag., 1992, Vol. AP-40, No. 5, pp. 517-525.
11. Panychev A.I. Algoritm trekhmernoy trassirovki radiovoln lokal'noy besprovodnoy seti [The algorithm of three-dimensional trace radio waves wireless lan] Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 11 (136), pp. 31-41.
12. Panychev A.I., Dubinskaya I.V. Sintez luchevoy traektorii proniknoveniya signalov WLAN v smezhnye pomeshcheniya [Synthesis of ray trajectory penetration wlan signals in adjacent rooms], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 5 (142), pp. 116-122.
13. Panychev A.I., Dubinskaya I.V. Analiz intensivnosti signalov lokal'noy besprovodnoy seti svyazi v smezhnykh pomeshcheniyakh [Analysis of the wireless local area network signals intensity in adjacent rooms], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 11 (148), pp. 44-50.
14. Panychev A.I., Vaganova A.A. Three-dimensional Tracing of WLAN Signals Between Rooms, 25th Int. Crimean Conference «Microwave & Telecommunication Technology» (CriMiCo’2015). 6-12 September 2015. Sevastopol, Crimea, 2015, Vol. 1, pp. 211-212.
15. Arsaev I.E. Rasseyanie ploskoy elektromagnitnoy volny na telakh vrashcheniya s pogloshchayushchimi pokrytiyami [Scattering of plane electromagnetic waves on bodies of revolution with absorbing coatings], Radiotekhnika i elektronika [Journal of Communications Technology and Electronics], 1982, Vol. 27, pp. 2101-2109.
16. Kravtsov Yu.A., Orlov Yu.I. Geometricheskaya optika neodnorodnykh sred [Geometrical optics of inhomogeneous media]. Moscow: Nauka, 1980, 304 p.
17. Grishchenko S.G. Rasseyanie elektromagnitnoy volny na tele vrashcheniya s mnogosloynym pokrytiem v kvaziopticheskoy oblasti [Scattering of electromagnetic waves on a body of revolution with a multilayered covering in quasi-optical region], Radiotekhnika i elektronika [Journal of Communications Technology and Electronics], 1993, Vol. 38, No. 8, pp. 1370-1378.
18. Grishchenko S.G. Issledovanie kharakteristik rasseyaniya tel vrashcheniya proizvol'noy formy v kvaziopticheskoy oblasti [A study of scattering characteristics of bodies of revolution of arbitrary shape in quasi-optical region], Izvestiya vuzov. Radioelektronika [Proceedings of the Russian Universities: Radioelectronic], 1993, Vol. 36, No. 2, pp. 69-72.
19. Grishchenko S.G., Kisel' N.N, Vaganova A.A. Chislennyy analiz mnogosloynoy modeli zemnoy poverkhnosti [Numerical analysis of earth surface multilayer model], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 11 (148), pp. 105-116.
20. Grishchenko S.G., Kisel' N.N, Vaganova A.A. Rasseyanie elektromagnitnykh voln telom vrashcheniya, raspolozhennym na mnogosloynom poluprostranstve [Scattering of electromagnetic waves by body of revolution located on multilayered half-space], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 11 (148), pp.141-150.
21. Grishchenko S.G., Kisel N.N. Research of the Underlying Surface Model, 25th Int. Crimean Conference «Microwave & Telecommunication Technology» (CriMiCo’2015). 6-12 September 2015. Sevastopol, Crimea, 2015, Vol. 1, pp. 1126-1127.
22. Grishchenko S.G., Kisel N.N. Microwave Model of a Scatterer, located on the underlying surface, 25th Int. Crimean Conference «Microwave & Telecommunication Technology» (CriMiCo’2015). 6-12 September 2015. Sevastopol, Crimea, 2015, Vol. 1, pp. 1198-1199.

Comments are closed.