Article

Article title PREDICTION PERFORMANCE TECHNICAL OBJECTS BASED ON ASSESSMENT OF THE BAND CONTROLLED PARAMETERS
Authors S.I. Klevtsov
Section SECTION IV. CONTROL AND MANAGEMENT IN TECHNICAL SYSTEMS
Month, Year 11, 2015 @en
Index UDC 681.3.062
DOI
Abstract The task of building predictive models of pre-health evaluation of the technical object has many uses in the control of various dangerous situations. The need for advanced condition monitoring of technical object to prevent and control the occurrence of abnormal situations in order to eliminate them with minimal impact statement and makes the task relevant and timely. To perform predictive assessment of the technical object is advisable to use simple models to get results in real time without a significant load on the microcontroller systems management. The initial information for the evaluation are the results of data analysis of the possible in the subsequent time you change the parameters of the object. To determine the projected parameter values, as well as predictable assessment of individual parameters of a technical object or a combination of real-time using the methods of analysis and forecasting of time series. The model and algorithm of the rapidly predict values of the physical quantity based on the use of multiple exponential smoothing her time series. The effectiveness of the model and the algorithm is evaluated on the basis of data on the changing values of the projections of the vector acceleration of a vehicle, measured by the three-axis accelerometer in real driving conditions. Determining the level of performance of a technical object is carried out using the model of the band assessment of the set of parameters. It is assumed that there are expert and experienced data to formulate and compare the state of the set of parameters with the levels of performance of the object and the formation of teams to eliminate or prevent the resulting abnormal and unstable situations. The generalized scheme of multi- parameter identification of the technical state of the object based on the introduction of the median line, form the local area states. A phased scheme of the assessment of the level of efficiency of the technical object.

Download PDF

Keywords Identification; state; evaluation; technical object; parameter; microcontroller; classification.
References 1. Klevtsova A.B., Klevtsov G.S. Modeli parametricheskoy ekspress-otsenki sostoyaniya tekhnicheskogo ob"ekta [Parametric models for the rapid assessment of the condition of a technical object], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2008, No. 11 (88), pp. 15-19.
2. Detlev W. Gross. Partial Discharge Measurement and Monitoring on Rotating Machines, IEEE Int. Sym. On Elect. Insul, Boston MAUSA, April 7-10, 2002, pp. 33-41.
3. Vovk S.P., Ginis L.А. Modelling and forecasting of transitions between levels of hierarchies in Difficult formalized systems, European Researcher, 2012, Vol. (20), No. 5-1, pp. 541-545.
4. Klevtsov S.I., Klevtsova A.B., Burinov S.V. Model' parametricheskoy kachestvennoy ierarkhicheskoy otsenki sostoyaniya tekhnicheskoy sistemy [A parametric hierarchical model for quality assessment of the state of technical systems], Inzhenernyy vestnik Dona [Engineering journal of Don], 2015, No. 3. Available at: http://www.ivdon.ru/ru/magazine/archive/n3y2015/3088.
5. Matuszewski J. Application of clustering methods for recognition of technical objects, Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET), 2010 International Conference, 2010, pp. 39-40.
6. Lihua Sun, Yingjun Guo, Haichao Ran. A New Method of Early Real-Time Fault Diagnosis for Technical Process, Electrical and Control Engineering (ICECE), 2010 International Conference, 2010. Wuhan, China, pp. 4912-4915.
7. Klevtsov S.I. Predvaritel'naya otsenka sostoyaniya sovokupnosti parametrov tekhnicheskogo ob"ekta s ispol'zovaniem intellektual'nogo mikroprotsessornogo modulya [The simplified estimation of the condition for set of parameters of technical object with use of the intellectual microprocessor module], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2010, No. 5 (106), pp. 43-48.
8. Klevtsova A.B. Integral'naya otsenka sostoyaniya ob"ekta monitoringa [Integrated assessment of the state of the monitoring object], Izvestiya TRTU [Izvestiya TSURe], 2004, No. 2 (37), pp. 58-65.
9. Klevtsov S.I. Prognozirovanie izmeneniya sostoyaniya sovokupnosti parametrov
tekhnicheskogo ob"ekta s pomoshch'yu intellektual'nogo mikroprotsessornogo modulya [Forecasting changes to the state of all parameters of technical object using the intellectual microprocessor module], Vserossiyskaya nauchno-tekhnicheskaya konferentsiya «Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem (MES)»: Sbornik trudov [all-Russian centre of scientific-technical conference "problems of development of perspective micro- and nanoelectronic systems (MES)": Collection of papers], 2010, No. 1, pp. 619-623.
10. Klevtsov S.I. Prognozirovanie izmeneniy fizicheskoy velichiny v real'nom vremeni s ispol'zovaniem lineynogo adaptivnogo fil'tra [Forecasting of changes of size physical in real time with use of the linear adaptive filter], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 5 (142), pp. 180-185.
11. Klevtsov S.I. Otslezhivanie izmeneniya sostoyaniya dinamicheskogo ob"ekta v real'nom vremeni s ispol'zovaniem mikroprotsessornogo modulya [Tracking state changes of the dynamic object in real time using microprocessor module], Vserossiyskaya nauchno-tekhnicheskaya konferentsiya «Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem (MES)»: Sbornik trudov [all-Russian scientific-technical conference "problems of development of perspective micro- and nanoelec-throne systems (MES)": Collection of papers], 2012, No. 1, pp. 684-687.
12. Lukashin Yu.P. Adaptivnye metody kratkosrochnogo prognozirovaniya vremennykh ryadov [Adaptive methods of short-term forecasting of time series]. Moscow: Finansy i statistika, 2003, 416 p.
13. Klevtsov S.I. Modelirovanie algoritma kratkosrochnogo prognozirovaniya izmeneniya bystromenyayushcheysya fizicheskoy velichiny v real'nom vremeni [Modeling of algorithm of short-term forecasting fast-changing physical size in real time], Inzhenernyy vestnik Dona [Engineering journal of Don], 2012, No. 3 (21), pp. 199-205.
14. Yaroshenko I.V. Matematicheskaya model' i metod klassifikatsii tekhnicheskogo sostoyaniya vysokovol'tnykh mekhatronnykh moduley [The mathematical model and the classification method of the technical condition of mechatronic modules high voltage], Inzhenernyy vestnik Dona [Engineering journal of Don], 2014, No. 2. Available at: ivdon.ru/ru/magazine/archive/n2y2014/2330.
15. Evtikhiev N.N., Karp V.P., Pudova N.V. Intellektual'nye sistemy podderzhki prinyatiya resheniy i optimizatsii upravleniya v slozhno organizovannykh dinamicheskikh ob"ektakh [Intellectual systems of decision support and optimization control of complex dynamic objects], Pribory i sistemy upravleniya [Devices and Control Systems], 1996, No. 3, pp. 35-40.
16. Klevtsova A.B. Parametricheskaya zonnaya otsenka sostoyaniya tekhnicheskogo ob"ekta s ispol'zovaniem rezhimnoy karty [Parametrical band model of the estimation condition for technical object with use of the regime card], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2010, No. 5 (106), pp. 107-111.
17. Klevtsova A.B. Algoritm otsenki i prognozirovaniya povedeniya peremennoy sostoyaniya ob"ekta [The algorithm of estimation and prediction of the behavior of the state variable of the object], Izvestiya TRTU [Izvestiya TSURe], 2006, No. 5 (60), pp. 133-139.
18. Lipman R. An introdaction to computing with neural nets, IEEE Acoustic, Speech and Signal Processing Magazine, 1987, No. 2, pp. 4-22.
19. Borisov E.S. Klassifikator na osnove neyronnoy seti Khemminga [The classifier based on neural network Hamming]. Available at: http://www.http://mechanoid.kiev.ua/neural-net-hamming-classifier.html.
20. Raus M., Ameling W. A layered information processing model for neural classification modules, Intelligent Systems Engineering, Second International Conference, 1994. Hamburg-Harburg, IET, pp. 144-153.
21. Gartner K.-P., Holzhausen K.-P., Kruger W., Pitrella, F.D., Wolf H. Identification of field objects in reduced quality TV pictures transmitted from telerobots to a remote control station, Intelligent Robots and Systems '93, IROS '93. Proceedings of the 1993 IEEE/RSJ International Conference, 1993, Vol. 3, pp. 1479-1486.
22. Box, George E.P., Gwilym M. Jenkins, Gregory C. Reinsel. Time series analysis: forecasting and control. 4th ed. A John Wiley & Sons, INC., Publication, 2015, 712 p.

Comments are closed.