Article

Article title IN SITU NUCLEATION AND GROWTH STUDIES NANOCATALYSTS BASED ON PT IN AN ATMOSPHERE OF HELIUM
Authors N.M. Nevzorova, I.N. Leontyev, G.E. Yalovega
Section SECTION II. NANOTECHNOLOGY, MICROELECTRONICS AND MICROELECTRONIC EQUIPMENT
Month, Year 12, 2015 @en
Index UDC 53.3997
DOI
Abstract Platinum based nanocomposite materials are widely used as catalysts for proton-exchange membrane fuel cells (PEMFC). The aim is to determine the kinetics of nucleation and growth, structural parameters nanosize platinum-based catalysts by heating in a helium atmosphere. Platinum acetylacetonate (II) (Pt(acac)2) was used as a precursor and inactive carbon Vulcan XC-72 was used as a support. Carbon supported pure Pt electrocatalysts were prepared by impregnating Pt(acac)2 precursor Vulcan XC-72. We have investigated the change features of XAFS spectra of formed in the gas phase nanoparticles by varying the temperature. We used He as a reducing gas. For direct control of the processes of formation of nanoparticles of Pt/C as a function of the synthesis conditions (T, heating time) we used XAFS (EXAFS and XANES) method. The X-ray absorption measurements of pure Pt catalysts in the Pt L3 absorption edge were carried out at the European Synchrotron Radiation Facility (France) using transmission mode. The measurements of the XAFS Pt L3-edge spectra were provided during the sample heating as a function of temperature. The temperature was raised from ambient temperature (~25°С) to 260°С under a flow of He. The changes in the shape of XANES spectra indicate to decomposition of Pt(acac)2 during the sample heating in helium atmosphere and supposedly formation of nanostructured platinum. A change of white line intensity of XANES with changes of Pt/C particle size was found. The temperatures of nucleation and growth of platinum nanoparticles were determined. In accordance of analysis of EXAFS data Pt nanoparticles formed on the carbon surface.

Download PDF

Keywords Fuel elements; nanoparticles Pt/C; catalystst; XANES; EXAFS.
References 1. Yoshitake H., Yamazaki O., Ota K. J. In Situ X‐Ray Absorption Fine Structure Study on Structure Transformation and Electronic State of Various Pt Particles on Carbon Electrode, lectrochem. Soc., 1994, pp. 2516.
2. Kinoshita K. Electrochemical Oxygen Technology. Wiley: New York. 1992.
3. Zhang J. PEM Fuel Cell Electrocatalysts and Catalyst Layers (Springer-Verlag London Limited 2008).
4. Van Bokhoven J, Paun C and Singh J. Structure of Platinum Catalysts under CO, Hydrogen, and Oxygen; Anomalous Behavior of Pt on Ceria after Cyanide Leaching, Phys. Chem., 2014, pp. 13432−13443.
5. Newton M., Belver-Coldeira C., Martinez-Arias A., Fernandez-Garcia M. Nanoparticle behaviour in changing environments: dynamic structural reorganisation in supported Pd nanoparticles during redox cycling, Nat. Mater., 2007, No. 6, pp. 528-532.
6. Belenov S.V., Guterman V.E. Sravnitel'noe issledovanie kataliticheskoy aktivnosti Pt/C i PtkhNi/C materialov v reaktsii elektrovosstanovleniya kisloroda [A comparative study of the catalytic activity in PT/C and PtxNi/C and of materials in the reaction of oxygen electroreduction], Inzhenernyy vestnik Dona [Engineering journal of Don], 2013, No. 4.
7. Zhang J. PEM Fuel Cell Electrocatalysts and Catalyst Layers (Springer-Verlag London Limited). 2008.
8. Markovic N., Gasteiger H., Ross P.N.J. Kinetics of Oxygen Reduction on Pt(hkl) Electrodes: Implications for the Crystallite Size Effect with Supported Pt Electrocatalysts, Electrochem. Soc., 1997, Vol. 144, pp. 1591-1597.
9. Guterman V.E., Pustovaya L.E., Guterman A.V., Vysochina L.L. Elektrokhimiya [Electrochemistry], 2007, No. 43, pp. 1147-1152.
10. Lee H., et al. Morphological Control of Catalytically Active Platinum Nanocrystals, Angew. Chem. Int. Ed., 2006, Vol. 45, pp. 7824-7828.
11. Chandravathanam S., Kavitha B., Viswanathan B., Thangam Y.Y. Study of sulphonic acid functionalization of Vulcan XC-72 carbon black support of Pt/Vulcan XC-72 catalysts for methanol electrooxidation, Indian Journal of Chemistry, 2012, Vol. 51A, pp. 704-707.
12. Antolini E., Salgado J.R.C., Gonzalez E.R. Carbon supported Pt75M25 (M = Co, Ni) alloys as anode and cathode electrocatalysts for direct methanol fuel cells, J. Electroanalytical Chemistry, 2005, Vol. 580, pp. 145-154.
13. Leontyev I.N., Kuriganova A.B., Leontyev N.G., Hennet L., Rakhmatullin A., Smirnova N.V., Dmitriev V. Size dependence of the lattice parameters of carbon supported platinum nanoparticles: x-ray diffraction analysis and theoretical considerations, RSC Adv., 2014, No. 4, pp. 35959-39965.
14. Nikitenko S., Beale A., van der Eerden A., Jacques S., Leynaud O., O’Brien M., Detollenaere D., Kaptein R., Weckhuysen B., Bras W. Implementation of a combined SAXS/WAXS/QuEXAFS setup for time-resolved in situ experiments, Journal of Synchrotron Radiation, 2008, No. 15, pp. 632-640.
15. Russell A.E., Rose A. X-ray Absorption Spectroscopy of Low Temperature Fuel Cell Catalysts, Chem. Rev., 2004, Vol. 104, pp. 4613-4635.
16. Ankudinov A, Bouldin C, Rehr J, Sims J, Hung H. Parallel calculation of electron multiple scattering using Lanczos algorithms, Phys. Rev., 2002, Vol. B 65, pp. 104107-104118.
17. Available at: http://cars9.uchicago.edu/~newville/adb/search.html.
18. Ravel B, Newville M. Athena, Artemis, Hephaestus. Data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat, 2005, No. 12, pp. 537-541.
19. Newville M. IFEFFIT: interactive XAFS analysis and FEFF fitting, Journal of Synchrotron Radiation, 2001, No. 8, pp. 324-332.
20. Shishido T., Asakura H., Amano F., Sone T., Yamazoe S., Kato K. In situ time-resolved energy dispersive XAFS study on reduction behavior of Pt supported on TiO2 and Al2O3, Catal Lett., 2009, Vol. 131, pp. 413-418.
21. Garcia A., Paganin V., Ticianelli E. CO tolerance of PdPt/C and PdPtRu/C anodes for PEMFC, Electrochim. Acta., 2008, Vol. 53, pp. 4309-4315.
22. Choi S.M., Yoon J.S., Kim H.J., Nam S.H., Seo M.H., Kim W.B. Electrochemical benzene hydrogenation using PtRhM/C (M =W, Pd, or Mo) electrocatalysts over a polymer electrolyte fuel cell system, Applied Catalysis A: General, 2009, Vol. 359, pp. 136-143.
23. Koningsberger D.C., Mojet B.L., van Dorssen G.E., Ramaker D.E. XAFS spectroscopy; fundamental principles and data analysis, Top. Catal., 2000, No. 10, pp. 143-155.
24. Pryadchenko V.V., Srabionyan V.V., Galustov A.D., Avakyan L.A., Mikheykina E.B., Zubavichus Ya.V., Guterman V.E., Bugaev L.A. Opredelenie atomnoy struktury bimetallicheskikh na-nochastits sostava Pt-Ag v metalluglerodnykh katalizatorakh po dannym spektroskopii rentgenovskogo pogloshcheniya [The determination of the atomic structure of bimetallic nanoparticles of PT with a composition of AG in metal-carbon catalysts according to x-ray absorption spectroscopy], Inzhenernyy vestnik Dona [Engineering journal of Don], 2014, No. 2. Available at: http://ivdon.ru/ru/magazine/archive/n2y2014/2369/.

Comments are closed.