Article

Article title ADVANCED PLATFORMS FOR MARINE ROBOTIC SYSTEM AND SOME OPTIONS OF THEIR USE
Authors I.V. Kozhemyakin, A.P. Blinkov, K.V. Rozhdestvensky, V.A. Ryzhov, V.D. Melentyev, V.Yu. Zanin
Section SECTION II. MARINE ROBOTICS
Month, Year 01, 2016 @en
Index UDC 551.46.077:529.584
DOI
Abstract Results are presented of the work carried out by Saint-Petersburg State Marine Technical University in the framework of complex research in provision of the development of a global information and measurement system based on marine robotic systems (MRS). In the context of this work assigned to the MRS are the following autonomous unmanned transport/measurement/communication/support platforms: underwater gliders, buoys and probes of variable buoyancy, surface wave buoys, wave gliders, bottom and ice communication stations, docking\undocking units of autonomous mobile objects, autonomous underwater vehicles (AUV). Altogether the MRS listed above form a complex of technical means- efficient elements of the global marine information and communication network. Prolonged exposure on the route or in a given navigation area with the goal of accumulating hydro-physical, chemical, radiation and other parameters and transmitting these parameters with use of the radio and hydro-acoustic channels, forming a unified information space, provision of data exchange with submersed objects through hydro-acoustic/optical channels, retranslation of the information using radio communication channels (satellite, meteor burst communications) determine high demand of the of the aforementioned MRS types for solution of wide range of practical problems: scientific, research, applied, related to monitoring and exploration of the world ocean, support of solution of environmental and climate forecasting problems, control of bioresources base, development of subsea fields, conducting seismic surveys, use for the purpose of control and notification in emergency situations as means of provision of complex safety of marine and coastal stationary facilities. This paper also analyzes foreign and national developments of MRS, options of their use for solving of the above listed practical problems, and formulates the main problematic issues related to the developments of a class of national MRS of glider type, provides certain conclusions on the perspectives of the progress of the research direction under consideration.

Download PDF

Keywords Mmarine information and measurements network; marine robotic system; autonomous unmanned underwater vehicle; underwater glider; wave glider; payload; interface signal retranslator; group missions.
References 1. Hammes T.X. Technologies Converge and Power Diffuses: The Evolution of Small, Smart, and Cheap Weapons, Policy Analysis, 2016, No. 786. Available at: http://www.cato.org/ publica-tions/policy-analysis/technologies-converge-power-diffuses-evolution-small-smart-cheap (accessed 10 February 2016).
2. Simonetti P. Slocum Glider: Design and 1991 field trials. Webb research corporation, 1992.
3. Eriksen C.C., Osse T.J., Light R.D., Wen T., Lehman T.W., Sabin P.L., Ballard J.W., Chiodi A.M. Seaglider: A Long-Range Autonomous Underwater Vehicle for Oceanographic Research, IEEE Journal of Oceanic Engineering, 2001, Vol. 26.
4. Serman J., Davis R., Owens W. B., Valdes J. The autonomous underwater glider «Spray», IEEE Journal of Oceanic Engineereing, 2001, Vol. 26, pp. 437-446.
5. Imlach J.; Mahr R. Modification of a military grade glider for coastal scientific applications, Sea Technology, 2012, Vol. 53, Issue 12, pp. 33-38.
6. D’Spain G. , Hildebrand J., Husband W., Stevenson M. Follow-On Tests of the ZRay Flying Wing Underwater Glider and Waveglider Autonomous Surface Vehicles, and their Passive Acoustic Marine Mammal Monitoring Systems. Marine Physical Laboratory, Scripps Institution of Oceanography, University of California, 2011.
7. Sea Explorer. Available at: http://www.acsa-alcen.com/robotics/seaexplorer (accessed 10 February 2016).
8. Caffaz A., Caiti A., Casalino G., Turetta A. The Hybrid Glider/AUV Folaga, Robotics & Automation Magazine, IEEE, 2010, Vol. 17, Issue 1, pp. 31-44.
9. Liquid Robotics, Inc. Available at: http://www.liquidr.com/ (accessed 10 February 2016).
10. MOST AV. Available at: http://www.autonautusv.com/ (accessed 10 February 2016).
11. Ocean Aero, Inc. Available at: http://www.oceanaero.us/Ocean-Aero-Submaran (accessed 10 February 2016).
12. Ocean Aero Awarded DoD Contract for Long Range Unmanned Vessel // NavalDrones. Available at: http://www.navaldrones.com/Submaran.html (accessed 10 February 2016).
13. Issledovaniya v obespechenie sozdaniya informatsionno-izmeritel'noy sistemy na osnove neobitaemykh podvodnykh apparatov tipa «glayder». Otchety po 1,2,3 etapam NIR, NICh SPbGMTU, № gos. reg. 01201280856, 2012-2014 [Research for support the creation of the information and measuring system based on the "glider" type autonomus unmanned underwater vehicles. Technical Reports on 1,2,3 stages, R&D Dept., SMTU, № 01201280856, 2012-2014 (in russian)].
14. Eksperimental'nye issledovaniya v obespechenie sozdaniya avtonomnogo neobitaemogo apparata tipa volnovoy glayder. Otchet po NIR, NICh SPbGMTU, 2015 [Experimental studies for support the creation of the wave glider-type autonomous unmanned vehicles. Technical Report, R&D Dept., SMTU, 2015 (in russian)].
15. Rozhdestvenskiy K.V., Ryzhov V.A., Tkachenko I.V., Frumen A.I. Issledovanie vertikal'nogo pogruzheniya apparata, osnashchennogo mekhanizmom izmeneniya plavuchesti pri uchete profilya plotnosti i obzhatiya korpusa [Study of submersion of a Body Equipped with Buoyancy Engine with Account of Density Profile and Hull Compression], Morskie intellektual'nye tekhnologii [Marine Intellectual Technologies], 2013, No. 2 (20), pp. 21-27.
16. Rozhdestvensky K.V., Ryzhov V.A., Tkachenko I.V., Frumen A.I. Study of submersion of a Body Equipped with Buoyancy Engine with Account of Density Profile and Hull Compression,Proceedings of the Society for Underwater Technology Technical Conference (SUTTC2013), Sept. 3-5, 2013, pp. 47-56.
17. Rozhdestvensky K.V. A View on Development of Underwater Gliders, Plenary presentation at the Society of Underwater Technology Technical Conference (SUTTC2013). Shanghai, 2 September, 2013.
18. Kozhemyakin I.V., Rozhdestvenskiy K.V., Ryzhov V.A. Voprosy gidrodinamicheskogo proektirovaniya glayderov novogo pokoleniya [he issues of hydrodynamic design of the glider of the new generation], Materialy Devyatoy nauchno-prakticheskoy konferentsii «Perspektivnye sistemy i zadachi upravleniya» [Materials of the Ninth scientific and practical conference "Advanced systems and control problems"]. Taganrog: Izd-vo YuFU, 2014, pp. 121-130.
19. Kozhemyakin I.V., Rozhdestvenskiy K.V., Ryzhov V.A. O perspektivnykh razrabotkakh SPbGMTU v oblasti proektirovaniya podvodnykh glayderov [SMTU advanced development in the field of design of underwater gliders], Morskie intellektual'nye tekhnologii [Marine Intellectual Technologies], 2014, No. 12, pp. 32-37.
20. Kozhemyakin I.V., Rozhdestvenskiy K.V., Ryzhov V.A. Razrabotka podvodnykh i volnovykh glayderov – elementov morskoy global'noy informatsionno-izmeritel'noy sistemy [Development of the underwater and wave gliders as the marine global information and measurement system elements], Daydzhest innovatsionnykh proektov [Digest of innovative projects]. SPbGMTU, 2015, pp. 22-26.
21. Kozhemyakin I.V., Rozhdestvenskiy K.V., Ryzhov V.A. Volnovoy glayder, kak element morskoy global'noy informatsionno-izmeritel'noy sistemy [The wave gliders as the marine global information and measurement system elements], Materialy Desyatoy nauchno-prakticheskoy konferentsii «Perspektivnye sistemy i zadachi upravleniya» [proceedings of the Tenth scientific and practical conference "Advanced systems and control problems"]. Taganrog: Izd-vo YuFU, 2015, pp. 101-112.
22. Kozhemyakin I.V., Rozhdestvenskiy K.V., Ryzhov V.A. Razrabotka tekhnicheskoy platformy global'noy morskoy informatsionno-izmeritel'noy sistemy na osnove avtonomnykh neobitaemykh apparatov tipa glayder [Development of the technical platform of the global maritime information and measuring system based on the glider-type autonomous unmanned
vehicles], Rossiyskie innovatsionnye tekhnologii dlya osvoeniya uglevodorodnykh resursov kontinental'nogo shel'fa [Russian innovative technologies for OS-voenie hydrocarbon resources of the continental shelf], 2016, pp. 91-108.
23. The United States Navy Arctic Roadmap for 2014 to 2030. Available at: http://www.navy.mil/docs/USN_arctic_roadmap.pdf (accessed 10 February 2016).
24. RAO/CIS Offshore 2015. Available at: http://www.rao-offshore.ru/ (accessed 10 February 2016).
25. CMRE enhances autonomy and integration between Unmanned Vehicles as part of the ICARUS Search and Rescue project. CMRE PAO 24 October 2014. Available at: http://www.cmre.nato.int/news-room/blog-news-archive/42-rokstories/300-cmre-plays-a-crucial-role-in-enhancing-autonomy-and-integration-between-unmanned-vehicles-as-part-of-
the-icarus-sar-project (accessed 10 February 2016).
26. CMRE successfully demonstrates systems for persistent, autonomous and real-time maritime surveillance. CMRE PAO 10 July 2015. Available at: http://www.cmre.nato.int/news-room/blog-news-archive/42-rokstories/320-cmre-successfully-demonstrates-systems-for-persistent-autonomous-and-real-time-maritime-surveillance (accessed 10 February 2016).
27. BRIDGES Project (Bringing together Research and Industry for the Development of Glider Environmental Services). Available at: http://www.bridges-h2020.eu/ (accessed 10 February 2016).
28. GROOM Project (Gliders for Research, Ocean Observation and Management). Available at: http://www.groom-fp7.eu/doku.php (accessed 10 February 2016).
29. The Portuguese Navy, the CMRE and the University of Porto operate together for the first time in the REP14-Atlantic exercise. 17 July 2014. Available at: http://www.cmre.nato.int/news-room/blog-news-archive/42-rokstories/289-the-portuguese-navy-the-nato-centre-for-maritime-research-and-experimentation-and-the-university-of-porto-operate-together-for-the-first-time-in-the-rep14-atlantic-exercise (accessed 10 February 2016).
30. Enhanced collaboration with Portugal. CMRE PAO 16 July 2015. Available at: http://www.cmre.nato.int/news-room/blog-news-archive/42-rokstories/322-enhanced-collaboration-with-portugal (accessed 10 February 2016).
31. ATSA recognised in NSW position paper on Defencev// Australian Defence Magasine. 16 Sep 2013. Available at: http://www.australiandefence.com.au/news/atsa-recognised-in-nsw-
position-paper-on-defence (accessed 10 February 2016).
32. Naval Unmanned // Asian Military Rewiev. 01 June 2015. Available at:
http://www.asianmilitaryreview.com/naval-unmanned/ (accessed 10 February 2016).
33. Liquid Robotics launches Open Oceans Partner Program // Reuters. May 5, 2015. Available at: http://www.reuters.com/article/idUSnMKWLDmgLa+1f2+MKW20150505 (accessed 10 February 2016).
34. Gady F.S. Confirmed: US Navy Launches Underwater Drone From Sub. The Diplomat, 24 July 2015. Available at: http://thediplomat.com/2015/07/confirmed-us-navy-launches-
underwater-drone-from-sub/ (accessed 10 February 2016).
35. CoCoRo Project (Collective Cognitive Robots). Available at: http://cocoro.uni-graz.at/drupal/ (accessed 10 February 2016).

Comments are closed.