Article

Article title DEVELOPMENT OF UNDERWATER ROBOTIC SYSTEM, USING OPEN-SOURCE SIMULATION MODEL EXTENDED BY HYDROACOUSTIC INTERACTION
Authors I.V. Kozhemjakin, I.A. Putincev, N.N. Semenov, M.N. Chemodanov
Section SECTION II. MARINE ROBOTICS
Month, Year 01, 2016 @en
Index UDC 004.942
DOI
Abstract We present results of the practical applicability of the research ROS framework and the Gazebo simulator to simulate operation technical regulations, as well as for software development. Given a reference to a comparative analysis of various simulators and frameworks. Briefly describe the advantages and disadvantages of approaches to development of robotic systems. Peculiarities of development of underwater robotic vehicles, including the possibility of a group of applications. The experience of the development of robotic system without the use of software frameworks, provides a comparison with modern development methods. A description of the development model of the underwater robot in an environment Gazebo, drawing on the experience of the modeling autonomous underwater vehicle Girona 500. We describe the development of software using a software framework ROS. Describe the network model ROS, given the scheme of interaction developed modules. We describe the development of hydroacoustic model to be used as extensions to the Gazebo simulator. Described in detail the mathematical model of the emitters, receivers, model signal propagation and noise. The model takes into account the characteristics of a directional antenna array elements, and channels of the antennas. Taken into account chassis scattered reverberation and noise. As a reflection model uses bright-points model. Paper describe development cycle of the SMTU`s remote operated underwater vehicle, with the use of funds described complex and with the same software, it that was used in the simulation. As the computing module unit is-used beaglebone black module which is generally performed well. Also, given brief description of the developed machine components. Described student learning experience SMTU based programming simulates the proxy-models remotely operated underwater vehicles.

Download PDF

Keywords Simulation; remote control; group management; information-measuring and control system; networking technologies; hydroacoustic; robotic complex; mobile robot; remotely operated underwater vehicle.
References 1. Voytov D.V. Teleupravlyaemye neobitaemye podvodnye apparaty [Remote-controlled unmanned underwater vehicles]. Moscow: Morkniga, 2012, 504 p.
2. Prats M. et al. An open source tool for simulation and supervision of underwater intervention missions, Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on. IEEE, 2012.
3. Gazebo gets better at flying and diving. Available at: http://www.osrfoundation.org/gazebo-gets-better-at-flying-and-diving/ (accessed 19 February 2016).
4. Cook D., Vardy A., Lewis R. A survey of AUV and robot simulators for multi-vehicle operations, Autonomous Underwater Vehicles (AUV), 2014 IEEE/OES.
5. Chemodanov M.N. Struktura programmnogo obespecheniya imitatsionnoy modeli akusticheskogo vzaimodeystviya tekhnicheskikh podvodnykh ob"ektov [The software structure of the simulation model the acoustic interaction of underwater technical objects], Materialy 10-y Vserossiyskoy nauchno-prakticheskoy konferentsii «Perspektivnye sistemy i
zadachi upravleniya» (Taganrog-Dombay, 2015) [Proceedings of 10-th all-Russian scientific-practical conference "Advanced systems and control problems" (Taganrog-Dombai, 2015)]. Rostov-na-Donu: YuFU, 2015, Vol. 3.
6. Gazebo. Available at: http://www.gazebosim.org (accessed 19 February 2016).
7. ROS. Available at: http://www.ros.org (accessed 19 February 2016).
8. SDF. Available at: http://sdformat.org/ (accessed 19 February 2016).
9. URDF. Available at: http://wiki.ros.org/urdf (accessed 19 February 2016).
10. Kermorgant O. A dynamic simulator for underwater vehicle-manipulators, International Conference on Simulatation, Modeling and Programming for Autonomous Robots SIMPAR 2014, Oct 2014.
11. Gusev V.G. Sistemy prostranstvenno-vremennoy obrabotki gidroakusticheskoy informatsii [System of spatial-temporal processing sonar information]. Leningrad: Sudostroenie, 1988.
12. Urik R. Dzh. Osnovy gidroakustiki [Fundamentals of hydroacoustics]: translation from English. Leningrad: Sudostroenie, 1978, 446 p.
13. Eckart Carl. Principles of underwater sound. NDRC Summary technical reports, Div. 6, Vol. 7, National research council, Committee on Undersea Warfare, 1946, 313 p.
14. Belov B.P., Mironov I.V. Semenov N.N. Tsifrovoe formirovanie napravlennosti gidroakusticheskoy antenny vo vremennoy oblasti [Digital formation orientation guide-robustiously antenna in the time domain], Sbornik nauchnykh trudov «Fundamental'naya i prikladnaya gidrofizika» [Collection of scientific papers "Fundamental and applied
Hydrophysics"]. St. Petersburg: SPb nauchnyy tsentr RAN, 2011, No. 4 (1), pp. 32-47.
15. Monin A.S., Yaglom A.M. Statisticheskaya gidromekhanika [Statistical mechanics], Mekhanika turbulentnosti [Mechanics of turbulence]. Part 1-2. Moscow: Nauka, 1965-1967.
16. Semenov N.N. Sravnenie razlichnykh tipov signala posylki dlya aktivnogo gidrolokatora [Comparison of different types of signal packages for active sonar]. St. Petersburg: Politekhnika, 2008, No. 9 (41), pp. 23-28.
17. Semenov N.N., Setin A.I. Obrabotka eksperimental'nykh dannykh otrazheniya FM-signala ot ob"ekta slozhnoy formy [Analysis of the experimental data of the reflection FM signal from the subject is complex], XII Vserossiyskaya konferentsiya «Prikladnye tekhnologii gidroakustiki i gidrofiziki» (GA-2014). 27–29 maya 2014 goda, Sankt-Peterburg [XII all-
Russian conference "Applied technologies of hydroacoustics and Hydrophysics" (HA 2014). On may 27-29, 2014, St. Petersburg].
18. Vudvord F.M. Teoriya veroyatnostey i teoriya informatsii s primeneniem v radiolokatsii [Probability theory and information theory with application in radar]. Moscow: Sov. Radio, 1955, 128 p.
19. Aleshin B.S. Orientatsiya i navigatsiya podvizhnykh ob"ektov [Orientation and navigation of moving objects]. Moscow: Fizmatlit, 2006, 426 p.
20. Tyagunov O.A. Matematicheskie modeli i algoritmy upravleniya promyshlennykh transportnykh robotov [Mathematical models and algorithms for control of transport industrial robots], Informatsionno-izmeritel'nye i upravlyayushchie sistemy [Information-measuring and control systems], 2007, Vol. 5, No. 5, pp. 63-69.

Comments are closed.