Article

Article title MOTION CONTROL OF UNDERWATER WALKING MACHINES MOVING ACROSS THE BOTTOM
Authors V.V. Chernyshev, V.V. Arykantsev, An.E. Gavrilov
Section SECTION II. MARINE ROBOTICS
Month, Year 01, 2016 @en
Index UDC
DOI
Abstract Walking machines and robots, which move at sea bottom in some cases, have a range of significant advantages, in comparison with swimming devices and traditional wheeled and tracked machines. Different approaches to movement control of underwater walking robotic systems are discussed in the work. The analysis of information measuring and control system of known seabed self-moved units was held. Typical problems, which appear during movement control of underwater walking devices are marked. It is was shown, that task of efficient adaptive type of underwater walking robots control is not solved yet. Offered the new approach to underwater walking devices with cyclic movers control. Cyclic movers allow not to care about safety and stability of the walk and exclude the necessity of controlled adaptation system. In result, machines have a minimal number of controlled degrees of freedom and become significantly simpler and cheaper than analogues with adaptive control. Some results of the walking device MAK-1, which was developed for optimization of cyclic walking mechanisms parameters and adjustment of control methods of robotic systems, which move at sea bottom, subsea tests are shown. Held experiments are also confirmed significant exellence of walking machines on ground and shape passableness in comparison with traditional vehicles. It is shown, that underwater devices of that type can find a wide application already nowadays. Results can be demand in development of underwater walking robotic systems, designed for subsea works execution, for new industrial technologies of seabed resources mastering, for anti-terrorist and technogenic safety of subsea infrastructure objects providing, etc.

Download PDF

Keywords Underwater units, bottom-moved machines, robotic system; mobile robot; mechatronic device; subsea technical works; information measuring and control system; sensors, walking mover, subsea tests.
References 1. Lyakhov D.G. Sovremennye zadachi podvodnoy robototekhniki [The challenges of underwater robotics], Podvodnye issledovaniya i robototekhnika [Underwater Researches and Robotics], 2012, No. 1, pp. 15-23.
2. Illarionov G.Yu. Nekotorye aspekty voennogo primeneniya podvodnykh robotov za rubezhom [Some aspects for military application of underwater vehicles abroad], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 3 (128), pp. 65-75.
3. Illarionov G.Yu., Sidorenko V.V., Smirnov S.V. Avtonomnye neobitaemye podvodnye apparaty dlya poiska i unichtozheniya min [Autonomous unmanned underwater vehicles for search and destruction of mines], Podvodnye issledovaniya i robototekhnika [Underwater Researches and Robotics], 2006, No. 1, pp. 31-39.
4. Sidenko K.S., Laptev K.Z., Illarionov G.Yu. Upravlyaemye po kabelyu neobitaemye podvodnye apparaty dlya poiska i unichtozheniya min [Managed cable uninhabited under-water vehicles for search and destruction of mines], Dvoynye tekhnologii [Dual technology], 2009, No. 3, pp. 28-31.
5. Sidenko K.S., Illarionov G.Yu. Novye podkhody k probleme zashchity ob"ektov morskoy infrastruktury ot podvodnykh diversantov i terroristov [New approaches to the problem of protection of objects of sea infrastructure from underwater saboteurs and terrorists], Morskaya radioelektronika [Marine Radio electronics], 2008, No. 4, pp. 2-9.
6. Andreev S.I., Kazakova V.E., Babaeva S.F., Cherkashev G.A. Tverdye poleznye iskopaemye mirovogo okeana: istoriya otkrytiy, geologicheskoe izuchenie, perspektivy osvoeniya [Solid minerals in the world ocean: history of discoveries, geological research, prospects of development], Gornyy zhurnal [Mining Journal], 2013, No. 11, pp. 65-72.
7. Verichev S., Laurens de Jonge, Wiebe B., Rodney N. Deep mining: from exploration to exploitation, Minerals of the Ocean – 7 & Deep-Sea Minerals and Mining – 4: abstracts of International Conference, VNIIOkeangeologia. St. Petersburg, 2014, pp. 126-138.
8. Podvodno-tekhnicheskie raboty [Underwater-technical work]. Available at:
http://www.ptr.akva-eko.rf/content/podvodnyy-transheekopatel.
9. Amphibious Bulldozer. Available at: http://www.komatsu.com/CompanyInfo/views
/pdf/201312/Views_No20_amphibious_bulldozer.pdf.
10. Podvodnyy ekskavator Menzi Muck podgotavlivaet okeanskoe dno k prokladke gazoprovoda [Underwater excavator Menzi Muck shall prepare the ocean floor for the laying of vasoprowater]. Available at: http://www.exkavator.ru/main/news/inf_news/~id=7683.
11. Kabeleukladchik «Tyco Resolute» [A Cable-Handling Vessel "Tyco Resolute"]. Available at:
http://korabley.net/news/kabeleukladchik_tyco_resolute/2011-02-21-778.
12. Nautilus Minerals. Available at: http://www.nautilusminerals.com.
13. Jin-Ho Kim, Tae-Kyeong Yeu, Suk-Min Yoon, Hyung-Woo Kim, Jong-Su Choi, Cheon-Hong Min and Sup Hong Electric-Electronic System of Pilot Mining Robot, MineRo-II, Proceedings of the Tenth ISOPE Ocean Mining and Gas Hydrates Symposium Szczecin, Poland, September 22-26, 2013, pp. 269-273.
14. Hong S., Kim H.W., Choi J.S. Transient Dynamic Analysis of Tracked Vehicles on Extremely Soft Cohesive soil, The 5th ISOPE Pacific/Asia Offshore Mechanics Symposium, 2002, pp. 100-107.
15. Kim H.W., Hong S., Choi J.S. Comparative Study on Tracked Vehicle Dynamics on Soft Soil: Single-Body Dynamics vs. Multi-body Dynamics, ISOPE, OMS-2003, Tsukuba, Japan, 2003, pp. 132-138.
16. Briskin E.S., Chernyshev V.V., Maloletov A.V., Sharonov N.G. Sravnitel'nyy analiz kolesnykh, gusenichnykh i shagayushchikh mashin [Comparative analysis of wheeled, tracked and walking machines], Robototekhnika i tekhnicheskaya kibernetika [Robotics and Technical Cybernetics], 2013, No. 1, pp. 6-14.
17. Pavlovsky, V.E., Platonov, A.K. Cross-Country Capabilities of a Walking Robot, Geometrical, Kinematical and Dynamic Investigation, Theory and Practice of Robots and Manipulators, Romansy 13: Proc. of the 13-th CISM-IFToMM Symposium, Zakopane, Poland, 2000, pp. 131-138.
18. Briskin E.S., Chernyshev V.V., Maloletov A.V. i dr. Shagayushchaya mashina «Vos'minog» [Walking machine "Octopus"], Mekhatronika, avtomatizatsiya, upravlenie. [Mechatronics, Automation, Control], 2004, No. 5, pp. 48-49.
19. Chernyshev V.V. Opyt ispol'zovaniya shagayushchey mashiny dlya likvidatsii avariynogo razliva nefti [Experience in the use of a walking machine for the elimination of emergency oil spill], Bezopasnost' zhiznedeyatel'nosti [Life Safety], 2003, No. 5, pp. 28-30.
20. Briskin E.S., Chernyshev V.V., Maloletov A.V et al. On ground and profile practicability of multi-legged walking machines, Climbing and Walking Robots. CLAWAR 2001: Proc. of the 4-th Int. Conf. Karlsruhe, Germany, 2001, pp. 1005-1012.
21. Briskin E.S., Chernyshev V.V., Maloletov A.V., Zhoga V.V. The Investigation of Walking Machines with Movers on the Basis of Cycle Mechanisms of Walking, The 2009 IEEE Int. Conf. on Mechatronics and Automation: conf. proceedings. China, 2009, pp. 3631-3636.
22. Chernyshev V.V., Gavrilov A.E. Traction properties of walking machines on underwater soils with a low bearing ability, Minerals of the Ocean – 7 & Deep-Sea Minerals and Mining – 4: abstracts of Int. Conf./ VNIIOkeangeologia. St. Petersburg, 2014, pp. 21-24.
23. Yoo, S.Y., Jun, B.H., Shim, H. Design of static gait algorithm for hexapod subsea walking robot: Crabster, Transactions of the Korean Society of Mechanical Engineers, A. September 2014, Vol. 38, Issue 9, pp. 989-997.
24. Chernyshev V.V. Arykantsev V.V. MAK-1 – podvodnyy shagayushchiy robot [MAC-1 – underwater walking robot], Robototekhnika i tekhnicheskaya kibernetika [Robotics and Technical Cybernetics], 2015, No. 2, pp. 45-50.
25. Chernyshev V.V., Briskin E.S., Savin A.Yu. Shagayushchaya opora dlya transportnykh sredstv povy-shennoy prokhodimosti [Walking bearing for vehicles terrain], Patent 2207583 RF V 62 D 57/032. Volgograd: VolgGTU, 2003.
26. Arykantsev V.V., Chernyshev V.V. Podvodnye issledovaniya tyagovo-stsepnykh svoystv i prokhodimosti shagayushchego apparata MAK-1 [Subsea investigations of traction properties and passability of walking unit МАК-1], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 10, pp. 169-178.

Comments are closed.