Authors G.O. Kotiev, A.S. Diakov
Month, Year 01, 2016 @en
Index UDC 629.3
Abstract All modern research related to robotization and the creation of remote-controlled vehicles but are aimed at ensuring the controlled motion without a crew, but almost no work aimed at increasing the mobility of unmanned vehicles (BNTS). In this context, ensuring high mobility BNTS by choosing the type of propulsion and optimal design parameters of running systems with no limitations associated with psychophysiological human capabilities, it is an actual scientific problem. Ensuring high mobility BNTS when driving on roads and terrain, as well as in overcoming the obstacles it can be achieved by solving the following problems at the design stage: 1. Scientific studies aggregate performance properties BNTS aimed at ensuring high mobility in the absence of people on board. 2. Development of mathematical models BNTS other than the possibility of modeling the "big" movements. By "large" refers to such movements, the description of which can not be neglected in the modeling of geometric nonlinearity dynamics BNTS (fall, coups vehicles, etc.). 3. Conducting range of propeller type and optimize design parameters of running systems to ensure set parameters BNTS mobility. 4. Conduct a feasibility study of optimal design solutions for a variety of running BNTS systems. The set of solutions of problems is a method of providing mobility BNTS allowing the design phase to implement evidence-based selection-type propeller and optimize design parameters of running systems with no limitations associated with psychophysiological human capabilities.

Download PDF

Keywords Suspension system; mobility; unmanned vehicle; mathematical modeling; dynamics; optimization; engineering-economic analysis.
References 1. Rudianov N.A., Khrushchev V.S. Obosnovanie oblika boevykh i obespechivayushchikh robototekhnicheskikh kompleksov Sukhoputnykh voysk [Justification appearance of combat and support robotic systems Ground Forces], Inzhenernyy zhurnal: nauka i innovatsii [Engineering magazine: science and innovation], 2013, Issue 8. Available at:
2. Gorobtsov A.S., Kartsov S.K., Polyakov Yu.A. Osobennosti postroeniya prostranstvennykh dinamicheskikh modeley avtomobiley s uchetom bol'shikh dvizheniy tverdykh tel [Features of spatial dynamic models of cars in view of the large movements of solids], Izvestiya Tul'skogo gos. un-ta. Tekhnicheskie nauki [News of the Tula State University. Technical science], 2013, Issue 6, Part 1, pp. 102-115.
3. Programmnyy kompleks «Universal'nyy mekhanizm» [Software Package «Universal mechanism»]. Available at: (Accessed 24 February 2016).
4. Kotiev G.O., Gorelov V.A. Zakon raspredeleniya moshchnosti po kolesam dlya transportnogo robototekhnicheskogo kompleksa [The law of distribution capacity on wheels for vehicle robotic complex], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2010, No. 3 (104), pp. 124-127.
5. Naumov V.N., Kotiev G.O., Gorelov V.A., Mashkov K.Yu., Chizhov D.A. Metod matematicheskogo modelirovaniya pryamolineynogo dvizheniya robotizirovannykh transportnykh sredstv po deformiruemym gruntam [Mathematical modeling method of rectilinear motion of robotic vehicles on the deformable soils], Vestnik MGTU im. N.E. Baumana.
Mashinostroenie. Spetsial'nyy vypusk «Robototekhnika i mekhatronika» [Vestnik Bauman Moscow State Technical University. Engineering. Special issue «Robotics and Mechatronics»], 2012, pp. 57-64.
6. D'yakov A.S., Kotiev G.O., Shivirev M.V. Bokovoe shaganie transportnoy mashiny [Side pacing transport machines], Vestnik mashinostroeniya [Vestnik engineering], 2015, No. 11, pp. 86-88.
7. D'yakov A.S., Ryazantsev V.I., Ankinovich G.G. Reshenie zadach profil'noy prokhodimosti robototekhnicheskogo kompleksa s kolesno-shagayushchim dvizhitelem s pomoshch'yu matematicheskogo modelirovaniya [Meeting the challenges of the profile cross-robotic system
with wheel-propelled walking with the help of mathematical modeling], Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and education. Bauman Moscow State Technical University], 2014, No. 12, pp. 291-307. DOI: 10.7463/1214.0747961.
8. Noskov V.P., Rubtsov I.V. Opyt resheniya zadachi avtonomnogo upravleniya dvizheniem mobil'nykh robotov [Experience in solving the problem of autonomous motion control of mobile robots], Mekhatronika, avtomatizatsiya, upravlenie [Mechatronics, Automation, Control], 2005, No. 12, pp. 21-24.
9. Lapshov V.S., Noskov V.P., Rubtsov I.V. Opyt sozdaniya avtonomnykh mobil'nykh robototekhnicheskikh kompleksov spetsial'nogo naznacheniya [Experience of creation of autonomous mobile robot for special purposes], Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie. Spetsvypusk «Spetsial'naya robototekhnika i mekhatronika» [Vestnik Bauman Moscow State Technical University. Engineering. Special issue «Special robotics and mecha-
tronics»], 2012, pp. 7-23.
10. Sheremet I.B., Rudianov N.A., Ryabov A.V., Khrushchev V.S. Problemy razvitiya robotizirovannogo vooruzheniya sukhoputnykh voysk [Justification of combat and support a family of robots to fight in], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 3 (140), pp. 21-24.
11. Rubtsov I.V., Boshlyakov A.A., Lapshov V.S., Mashkov K.Yu., Noskov V.P. Problemy i perspektivy razvitiya mobil'noy robototekhniki voennogo naznacheniya [Problems and prospects of development of mobile robotics for military use], Inzhenernyy zhurnal: nauka i innovatsii [Engineering magazine: science and innovation], 2015, Issue 05 (41). Available at:
12. RIA NOVOSTI [RIA NOVOSTI]. Available at: (Accessed 24 February 2016).
13. Ofitsial'nyy sayt PAO «KAMAZ» [Official site PАО «КАМАZ»]. Available at: (accessed 20 February 2016).
14. Ofitsial'nyy sayt OOO «766 Upravlenie proizvodstvenno-tekhnologicheskoy komplektatsii» [Official site ООО «766 Department of industrial and technological fitment»]. Available at: (accessed 15 February 2016).
15. Williams R., Carter B., Gallina P., and Rosati G. Wheeled Omni-directional Robot Dynamics Including Slip, In: Proc. of the 2002 ASME Design Engineering Technical Conf., Montreal, Canada, 2002, pp. 201-207.
16. Tadakuma K., Tadakuma R., Berengeres J. Development of Holonomic Omnidirectional Vehicle with “Omni-Ball”: Spcerical Wheels, In: Proc. of the 2007 IEEE/RSJ Int. Conf. on Intelligent Robotics and Systems, San Diego, CA, 2007, pp. 33-39.
17. Dubowsky S., Skwersky A. Omni-directional Mobility Using Active Split Offset Castors, ASME J. of Mechanical Design, 2004, Vol. 126, No. 5, pp. 822-829.
18. Park T., Lee J., Yi B., Kim W., You B. Optimal Design and Actuator Sizing of Redundantly Actuated Omni-directional Mobile Robots, In: Proc. of the 2002 IEEE Int. Conf. on Robotics and Automation, Washington DC, 2002, pp. 732-737.
19. Udengaard M., Iagnemma K. Design of an Omnidirectional Mobile Robot for Rough Terrain, In: Proc. of the 2008 IEEE Int. Conf. on Robotics and Automation, Pasadena, CA, 2008, pp. 1666-1671.
20. Wong J. Theory of Ground Vehicles. 4th ed. Wiley, New York. 2008.
21. Quinn R.D., Nelson G.M., Ritzmann R.E., Bachmann R.J., Kingsley D.A., Offi J.T., and Allen T.J., Parallel Strategies For Implementing Biological Principles Into Mobile Robots, Int. J. of Robotics Research (IJRR), 2003, Vol. 22, pp. 169-186.
22. Boxerbaum A., Oro J., Peterson G., and Quinn R.D. The Latest Generation Whegs Robot Features a Passive-Compliant Body Joint, in IEEE Int. Conf. on Intelligent Robots and Systems (IROS), 2008.
23. Boxerbaum A.S., Klein M.A., Bachmann R., Quinn R.D., Harkins R., and Vaidyanathan R. Design of a semi-autonomous hybrid mobility surf-zone robot, in 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Singapore: IEEE, Jul. 2009, pp 974-979. [Online]. Available: arnumber=5229713.
24. Ward C. and Iagnemma K. A Dynamic-Model-Based Wheel Slip Detector for Mobile Robots on Outdoor Terrain, IEEE Trans. On Robotics, 2008, Vol. 24, No. 4, pp. 821-831.

Comments are closed.