Article

Article title FORMATION OF AUV CONTROL SYSTEM BASED ON MULTI-AGENT TECHNOLOGY
Authors L.A. Martynova, A.I. Mashoshin
Section SECTION I. TECHNOLOGY MANAGEMENT AND MODELING
Month, Year 02, 2016 @en
Index UDC 626
DOI
Abstract The efficiency of the AUV strongly depends on the capabilities of its control system (CS), the creation of which is a very nontrivial problem, because it, besides the ensuring the task, should make a decision in a variety of poorly predicted abnormal situations. In addition, when making a decision one must take into account a large number of constraints imposed by the autonomous vehicle, habitat, limited resources. The aim of the work is to prove the practicability to construct the integrated CS (ICS) using on multi-agent technology, as well as the description of the structure and functioning of the AUV ICS as a multi-agent system. The increasing complexity of tasks necessitate the use of modern approaches to the design of the AUV ICS, the brightest and most promising of which is the multi-agent approach. The implementation of multi-agent approach to AUV ICS is to present ICS subsystems as agents with the follows features: each subsystem must contain the agent that controls this subsystem; to perform the functions of management every agent must be able to exchange information with other agents, as well as with technical means of its subsystems; to reduce the complexity of agents each agent can be decomposed into several agents with more simple functions. As an example, the work contains a description of the ICS functioning as the multi-agent system when managing the movement of AUV between two points. The complicated interaction between the agents, their communication and decision-making are shown. In fact, it is much more complicated, because this brief description does not take into account the interaction between agents within the subsystems, including the conditions of emergency situations caused by both external (unforeseen obstacles) and internal (hardware failure, software failure, exhaustion of stock electricity) causes.

Download PDF

Keywords AUV; multi-agent; control system; movement.
References 1. Avtonomnye podvodnye roboty. Sistemy i tekhnologii [The autonomous underwater robots. Systems and technology], Ed. by Ageeva M.D. Moscow: Nauka, 2005, 398 p.
2. Inzartsev A.V. i dr. Primenenie avtonomnogo neobitaemogo podvodnogo apparata dlya nauchnykh issledovaniy v Arktike [The use of autonomous underwater vehicle for scientific research in the Arctic], Podvodnye issledovaniya i robototekhnika [Underwater research and robotics], 2007, No. 2 (4), pp. 5-14.
3. Gizitdinova M.R., Kuz'mitskiy M.A. Mobil'nye podvodnye roboty v sovremennoy okeanografii i gidrofizike [Mobile underwater robots in modern oceanography and hydrophysics], Fundamental'naya i prikladnaya gidrofizika [Fundamental and Applied hydrophysics], 2010, Vol. 3, No. 1, pp. 4-13.
4. Bozhenov Yu.A. Ispol'zovanie avtonomnykh neobitaemykh podvodnykh apparatov dlya issledovaniya Arktiki i Antarktiki [The use of autonomous underwater vehicle for the study of the Arctic and Antarctic], Fundamental'naya i prikladnaya gidrofizika [Fundamental and Applied hydrophysics], 2011, Vol. 4, No. 1, pp. 4-68.
5. Millar G., Mackay L. Maneuvering under the ice, Sea technology, 2015, Vol. 56, No. 4, pp. 35-38.
6. Illarionov G.Yu., Sidenko K.S., Bocharov L.Yu. Ugroza iz glubiny: XXI vek [The threat from the depths: XXI vek]. Khabarovsk: KGUP "Khabarovskaya kraevaya tipografiya", 2011, 304 p.
7. Belousov I. Sovremennye i perspektivnye neobitaemye podvodnye apparaty VMS SShA [Current and future unmanned submersibles US Navy], Zarubezhnoe voennoe obozrenie [Foreign Military Review], 2013, No. 5, pp. 79-88.
8. Viktorov R.V., Illarionov G.Yu., Kvashnin A.G. Dvoynoe primenenie avtonomnykh neobitaemykh podvodnykh apparatov tipa "REMUS" [The double use of autonomous under-water vehicle type "REMUS"], Dvoynye tekhnologii [Dual Technology], 2010, No. 3.
9. Kuz'mitskiy M.A., Gizitdinova M.R. Mobil'nye podvodnye roboty v reshenii zadach VMF: Sovremennye tekhnologii i perspektivy [Mobile underwater robots in the solution of problems of the Navy: Modern technologies and perspectives], Fundamental'naya i prikladnaya gidrofizika [Fundamental and Applied hydrophysics], 2011, Vol. 4, No 3, pp. 37-48.
10. Pshikhopov V.Kh., Sirotenko M.Yu., Gurenko B.V. Strukturnaya organizatsiya sistem avtomaticheskogo upravleniya podvodnymi apparatami dlya apriori neformalizovannykh sred [Structural organization of automatic control systems for underwater vehicles priori formalized media], Informatsionno-izmeritel'nye i upravlyayushchie sistemy. Intellektual'nye i adaptivnye roboty [Information-measuring and operating systems. Intelligent and adaptive robots]. Moscow: Izd-vo «Radiotekhnika», 2006, No. 1-3, Vol. 4, pp. 73-79.
11. Pshikhopov V.Kh. Pozitsionno-traektornoe upravlenie podvizhnymi ob"ektami [Position-control trajectory of moving objects]. Taganrog: Izd-vo TTI YuFU, 2009, 183 p.
12. Pshikhopov V.Kh., Medvedev M.Yu. Strukturnyy sintez avtopilotov podvizhnykh ob"ektov s otsenivaniem vozmushcheniy [Structural synthesis of autopilots moving objects with estimation of perturbation], Informatsionno-izmeritel'nye i upravlyayushchie sistemy [Information-measuring and operating systems], 2006, No. 1, pp. 103-109.
13. Filaretov V.F., Lebedev A.V., Yukhimets D.A. Ustroystva i sistemy upravleniya podvodnykh robotov [Devices and underwater robots control system]. Moscow: Nauka, 2005, 270 p.
14. Kiselev L.V., Inzartsev A.V., Matvienko Yu.V. O nekotorykh zadachakh dinamiki i upravleniya prostranstvennym dvizheniem ANPA [Some problems of dynamics and control spatial motion], Podvodnye issledovaniya i robototekhnika [Underwater AUV research and robotics], 2006, No. 2, pp. 13-26.
15. Inzartsev A.V., L'vov O.Yu., Sidorenko A.V., Khmel'kov D.B. Arkhitekturnye konfiguratsii sistem upravleniya ANPA [Architectural configuration AUV control systems], Podvodnye issledovaniya i robototekhnika [Underwater AUV research and robotics], 2006, No. 1, pp. 18-30.
16. Ermolov I.L. Rasshirenie funktsional'nykh vozmozhnostey mobil'nykh tekhnologicheskikh robotov putem povysheniya urovnya ikh avtonomnosti s ispol'zovaniem ierarkhicheskoy kompleksnoy obrabotki bortovykh dannykh: dis. … d-ra tekhn. nauk [Expanding functionality of mobile robot technology by increasing their level of autonomy with a hierarchical integrated
data processing board. Dr. of eng. sc. diss], 2012, 350 p.
17. Pshikhopov V.Kh., Medvedev M.Yu. Adaptivnoe pozitsionnoe upravlenie podvizhnymi ob"ektami, ne linearizuemymi obratnoy svyaz'yu [Control of moving objects without linearizability feedback], Mekhatronika, avtomatizatsiya, upravlenie [Mechatronics, Automation, Control], 2015, Vol. 16, No. 8, pp. 523-530.
18. Martynova L.A., Mashoshin A.I., Pashkevich I.V., Sokolov A.I. Sistema upravleniya – naibolee slozhnaya chast' avtonomnykh neobitaemykh podvodnykh apparatov [Control system – the most difficult part of the autonomous underwater vehicle], Morskaya radioelektronika [Marine Electronics], 2015, No. 4 (54), pp. 23-32.
19. Martynova L.A., Mashoshin A.I., Pashkevich I.V., Sokolov A.I. Integrirovannaya sistema upravleniya avtonomnogo neobitaemogo podvodnogo apparata [Integrated Management System autonomous underwater vehicle], Materialy 8-y Vserossiyskoy mul'tikonferentsii po
problemam upravleniya, Divnomorskoe, 28 sentyabrya – 3 oktyabrya 2015g [Materials of the 8th All-Russian multiconference management issues Divnomorskoe, September 28 - October 3, 2015], Vol. 3, pp. 191-193.
20. Martynova L.A., Mashoshin A.I., Pashkevich I.V., Sokolov A.I. Algoritmy, realizuemye integrirovannoy sistemoy upravleniya ANPA [Algorithms realized the integrated control system of AUV], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 1 (162), pp. 50-58.
21. Gorodetskiy V.I., Grushinskiy M.S., Khabalov A.V. Mnogoagentnye sistemy (obzor) [Multi-agent systems (review)], Novosti iskusstvennogo intellekta [News of Artificial Intelligence], 1998, No. 2, pp. 64-116.
22. Rzhevskiy G.A., Skobelev P.O. Kak upravlyat' slozhnymi sistemami? Mul'tiagentnye tekhnologii dlya sozdaniya intellektual'nykh sistem upravleniya predpriyatiyami [How to manage complex systems? Multi-agent technology to create intelligent business management systems]. Samara: Ofort, 2015, 290 p.
23. Innocenti B. A multi-agent architecture with distributed coordination for an autonomous robot. Ph.D. dissertation – Universitat de Girona, 2009, 146 p.

Comments are closed.