Article

Article title DESIGN PRINCIPLES FOR EXTRAPOLATING MULTIDIMENSIONAL NEURAL-NETWORK PLANNER FOR INTELLECTUAL POSITION-TRAJECTORY CONTROL SYSTEM OF MOVING OBJECTS
Authors V.Ph. Guzik, V.A. Pereverzev, A.O. Pyavchenko, R.V. Saprykin
Section SECTION I. TECHNOLOGY MANAGEMENT AND MODELING
Month, Year 02, 2016 @en
Index UDC 681.511.4+004.896:519.876.5
DOI
Abstract In this report we are describing the design principles for extrapolating multidimensional neural-network planner (EMNP) for a intellectual position-trajectory control system for moving objects. Thus we present the results of our study of a modernized neural-network moving object (MO) movement planning method that is used in the multidimensional space based on the bionic environment sensing in undefined conditions with barriers that can move dynamically. We consid- er a synthetic hierarchical structure of an extrapolating multidimensional neural network (MNN) as the main principal to structurize and build EMNP. Such MNN has separate layers used for different stages of environment model processing provided by the vision system (VS) in the above mentioned conditions. The hierarchical structure of the MNN is based on object-oriented parametric synthesis, synthesis of weighted object position features with time sampling, direction vector plans used to extrapolate such features, that determine probabilistic special position of related objects. We analyzed the results of selected methods used to detect moving barriers of round or spherical type and predict their trajectories in space of the corresponding dimension based on VS data. We present the results of software-based modelling of this approach to build EMNP for the intellectual position-trajectory control system for moving objects in a multidimensional space using the simulation software complex we developed.

Download PDF

Keywords Robotic mobile unit; bionic environment sensing; extrapolating multidimensional neural-network planner; multidimensional neuronetwork; building principles; weighted object position features; direction vector; extrapolation of values; software-based simulation modelling.
References 1. Pshikhopov V.Kh., Ali A.S. Hybrid motion control of a mobile robot in dynamic environments, in Proc. Int. Conf. on Mechatronics, ICM 2011, pp. 540-545.
2. Pshikhopov V.Kh., Medvedev M.Yu. Robust control of nonlinear dynamic systems, in IEEE ANDESCON Conf. Proc., ANDESCON, Bogota, Sep. 2010.
3. Pshikhopov V.Kh., Medvedev M.Yu. Document Block design of robust control systems by direct Lyapunov method, in Proc. of the 18th IFAC World Congress, 2011, pp. 10875-10880.
4. Pshikhopov V., Medvedev M., Neydorf R., Krukhmalev V. et al. Impact of the feeder aerodynamics characteristics on the power of control actions in steady and transient regimes, SAE Technical Papers, 2012, No. 01.
5. Neydorf R., Krukhmalev V., Kudinov N., Pshikhopov V. Methods of statistical processing of meteorological data for the tasks of trajectory planning of MAAT feeders, SAE Technical Papers, 2013.
6. Pshikhopov V., Krukhmalev V., Medvedev M., Neydorf R. Estimation of energy potential for control of feeder of novel cruise/feeder MAAT system, SAE Technical Papers, 2012, No. 01.
7. Pshikhopov V.K., Medvedev M.Yu., Gurenko B.V. Homing and Docking Autopilot Design for Autonomous Underwater Vehicle, Applied Mechanics and Materials, 2014, pp. 490-491.
8. Pshikhopov V., Sergeev N., Medvedev M., Kulchenko A. The design of helicopter autopilot, SAE Technical Papers, 2012, No. 01.
9. Pshikhopov V.Kh., Medvedev M.Yu., Gaiduk A.R., Gurenko B.V. Control system design for autonomous underwater vehicle, in Latin American Robotics Symposium, 2013, pp. 77-82.
10. Pshikhopov V., Medvedev M., Kostjukov V., Fedorenko R. et al. Airship Autopilot Design, SAE Technical Paper, 2011, No. 01.
11. Pshikhopov V.Kh., Krukhmalev V.A., Medvedev M.Yu., Fedorenko R.V., Kopylov S.A., Budko A.Yu., Chufistov V.M. Adaptive control system design for robotic aircrafts, in IEEE Latin American Robotics Symposium, 2013, pp. 67-70.
12. Guzik V.Ph., Chernukhin Yu.V., Pyavchenko A.O., Polenov M.Yu., Pereverzev V.A., and Saprykin R.V. Neural network method of intellectual planning of mobile robotic object movement in the conditions of uncertainty, Advances in Robotics, Mechatronics and Circuits. Proceedings of the 2014 International Conference on Mechatronics and Robotics, Structural
Analysis (MEROSTA 2014), Santorini Island, Greece, 2014, pp. 194-200.
13. Intellektual'noe planirovanie traektoriy podvizhnykh ob"ektov v sredakh s prepyatstviyami [Intelligent planning of the trajectories of moving objects in environments with obstacles-for the second time], Ed. by V.Kh. Pshikhopova. Moscow: Fizmatlit. 2014, 300 p. ISBN 978-5-9221-1595-7.
14. Fujimura K. Time-Minimum Routes in Time-Dependent Networks, IEEE Trans. on Robotics and Automation, 1995, Vol. 11, No. 3, pp. 343-351.
15. Tsubouchi T. and Arimoto S. Behavior of a Mobile Robot Navigated by an Iterated Forecast and Planning Scheme in the Presence of Multiple Moving Obstacles, In Proc. 1994 IEEE Int. Conf. on Robotics and Automation, 1994, pp. 2470-2475.
16. Fiorini P. and Shiller Z. Motion Planning in Dynamic Environments Using Velocity Obstacles, Int. J. of Robotics Research, 1998, Vol. 17, No. 7, pp. 760-772.
17. Lindsey P., Norman D. Pererabotka informatsii u cheloveka [Information processing in humans], Ed. by Luriya A.R. Moscow: Mir, 1974, 551 p.
18. Chernukhin Y.V., Pisarenko S.N. Extrapolation Structures in Neural Network-Based Control Systems for Intelligent Mobile Robots, Optical Memory and Neural Networks, 2002, Vol. 11, No. 2, pp. 105-115.
19. Chernukhin Yu.V. Iskusstvennyy intellekt i neyrokomp'yutery: Monografiya [Artificial intelligence and Neurocomputers: Monograph]. Taganrog: Izd-vo TRTU, 1997, 273 p.
20. Chernukhin Yu.V., Pisarenko S.N. Neyrosetevaya ekstrapolyatsiya v sistemakh upravleniya intellektual'nykh mobil'nykh robotov [Extrapolation of neural network in control systems of intelligent mobile robots], Sbornik dokladov Yubileynoy Mezhdunarodnoy konferentsii po neyrokibernetike [the Collection of reports of the Anniversary International conference on
Neurocybernetics]. Rostov-na-Donu: Izd-vo OOO «TsVVR», 2002, Vol. 2, pp. 147-151.
21. Chernukhin Yu.V., Pisarenko S.N. Ekstrapoliruyushchie struktury neyrosetevogo tipa v sistemakh upravleniya intellektual'nykh mobil'nykh robotov [Extraprise structure type neural network in control systems of intelligent mobile robots], Sbornik trudov II Мezhdunarodnoy konferentsii «Identifikatsiya sistem i zadachi upravleniya» SICPRO’03 [Proceedings of the II
International conference "system Identification and control problems" SICPRO'03]. Moscow: Izd-vo IPU RAN im. V.A. Trapeznikova, 2003, pp. 1809-1820.

Comments are closed.