Article

Article title CELLULAR-LAYERED METHOD OF RESEARCH OF IMPACT ON THE ENVIRONMENT
Authors A.K. Kubanova
Section SECTION I. TECHNOLOGY MANAGEMENT AND MODELING
Month, Year 02, 2016 @en
Index UDC 519.532.711.3
DOI
Abstract There are ethnogeny and natural influences on multiphase objects of environment when at these intensive shock influences, as a rule, existential characteristics aren"t known their local amplitudes and durations of influence are small, in comparison with characteristic time of a relaxation of environment. In such situation there is a necessity for development of the new approach to modeling of dynamics of movement of multiphase environments. The essence of the approach offered by us consists: in development of methods of mathematical modeling enough difficult processes of dynamics of movement of multiphase environments on the basis of updating of a method of the characteristics considering a self-coordination of a field of speeds of the multiphase environment, position of characteristics, and also presence of a surface of the strong rupture, allowing on known locally-extreme influence on the multiphase environment to define its dynamic condition caused by this influence. In according with the algorithm of calculation we offered cellular- layered method of determining the spread of the disturbance. These methods can solve a range of practical problems effectively in the design and computation of underground structures and systems of protection against seismic and technogenic effects with considering the rheological characteristics of environments.

Download PDF

Keywords Dynamics of movement of the three-phase environment; the modified method of characteristics; locally-extreme influence on Environment; cellular-layered method.
References 1. Grigoryan S.S. Ob osnovnykh predstavleniyakh dinamiki gruntov [About the basic concepts of soil dynamics], Prikladnaya matematika i mekhanika [Journal of Applied Mathematics and Mechanics], 1960, Vol. 25, Issue 4.
2. Grigoryan S.S., Martirosyan M.M. O volnakh v grunte, vozbuzhdaemykh nazemnym vzryvom. Otchet № 497 [About the waves in the soil induced by ground explosion. Report No. 497]. Moscow: Institut mekhaniki MGU, 1969.
3. Kaliski S., Osieski I. Plaska fala odciarenia u osrodku firicnie nielinowym przy zmiennum mobile obciazenia. – Wazawa, 1958.
4. Alekseenko V.D., Grigoryan S.S., Novgorodov A.F., Rykov G.V. Nekotorye eksperimental'nye issledovaniya po dinamike myagkikh gruntov [Some experimental fundamental research on the dynamics of soft soils], Doklady Akademii Nauk SSSR [Doklady Sciences USSR], 1960, Vol. 133, No. 6.
5. Lyakhov G.M. Volny v gruntakh i poristykh sredakh [Waves in soils and porous media]. Moscow: Nauka, 1982, 288 p.
6. Rakhmatulin Kh.A. Osnovy gazodinamiki vzaimopronikayushchikh dvizheniy szhimaemykh sred [Fundamentals of gas dynamics of interpenetrating motions of compressible fluids], Prikladnaya matematika i mekhanika [Journal of Applied Mathematics and Mechanics], 1956, Vol. 20, No. 2.
7. Nigmatulin R.I. Dinamika mnogofaznykh sred [Dynamics of multiphase media]. Moscow: Nauka, 1987, Vol. 1, 464 p.
8. Nigmatulin R.I. Mekhanika sploshnoy sredy. Kinematika. Dinamika. Termodinamika. Statisticheskaya dinamika [Mechanics of the continuous environment. Kinematics. Dynamics. Thermodynamics. Statistical dynamics]. Moscow: GOETAR-Media 2014, 640 p.
9. Krayko A.N. i dr. Mekhanika mnogofaznykh sred [Mechanics of multiphase mediums], Sbornik «Nauki i tekhniki», Gidrodinamika [the Collection "Science and technology", fluid dynamics]. Moscow: VINITI, 1972, Vol. 6, pp. 93-174.
10. Green A.E., Naghdi M.A. Atheary of mixtures Arch Rat, Mech and Anal., 1967, Vol. 24, No. 4, pp. 243-263.
11. Eringen A.C., IngramI.D. Continuum theary of chemically reacting media, Snt. J. Eng., Sep. 1956, Vol. 3, No. 2, pp. 197-212.
12. Lutzky M., Lehto D.L. Shock propagation in spherically symmetric exponencial atmosphere, Phys. Fluids, 1968, Vol. 11, No. 7, pp. 1466.
13. Carrier G.F. Shock waves in a dusty gas, J. Fluid Mech., 1958, Vol. 4, pp. 376-382.
14. Dunwody N.T., Muller I. Arch Ration Mech and Anal, 1968, Vol. 29, No. 5.
15. Gogosov V.V., Naletova V.A., Shaposhnikova G.A. Ob odnoy modeli mnogofaznoy sredy [A model for the multi-phase medium], Doklady Akademii Nauk SSSR [Doklady Sciences USSR ], 1977, No. 5, pp. 1098-1101.
16. Gogosov V.V., Naletova V.A., Shaposhnikova G.A. Ob opisanii mnogofaznykh sred: V kn. Problema osredneniya i postroeniya kontinual'nykh modeley v mekhanike sploshnoy sredy [About the description of multiphase media in book: The problem of averaging and the construction of continuum models in continuum mechanics]. Moscow, 1980, pp. 36-52.
17. Mamadaliev V.A., Molev V.P. O rasprostranenii dvumernoy plasticheskoy volny v nelineyno-szhimaemoy poluploskosti [On distribution of two-dimensional plastic waves in nonlinear compressible half-plane], ZhPMiTF, 1977, No. 4, pp. 152-156.
18. Truesdell C. Sulle basi della termooechanica Rend, Acad naz Lincei, Cl. Sci. Fis, mal. e natur. Ser. 8, 1957, Vol. 22, pp. 33-38, 158-166.
19. Fick A. Uber Diffusion, Ann. Phys. und Chem., 1855, Vol. 94, No. 1, pp. 59-86.
20. Hilbert D. Mechanik der Continua Lechures of notes by W. Marchall in Purdue University, Library, pp. 1906-1907.
21. Kubanova A.K. Modelirovanie dinamiki dvizheniya polikomponentnykh sistem pri vneshnikh vozdeystviyakh [Modeling dynamics of multicomponent systems under external influences]. Moscow: OOO «IPTs» Maska, 2010, 280 p.
22. Kubanova A.K. Matematicheskoe modelirovanie dinamiki dvizheniya trekhfaznoy sredy pri vneshnem vozdeystvii [Mathematical modelling of dynamics of motion of a three-phase environment of an external impact], Mezhdunarodnaya konferentsiya «Sovremennye problemy gazovoy i volnovoy dinamiki» [International conference "Modern problems of gas and wave
dynamics"]. Moscow, 2009, pp. 62-64.
23. Rakhmatulin Kh.A., Kubanova A.K. Volnovoe dvizhenie trekhkomponentnoy sredy pod deystviem nagruzki, begushchey po ploskoy granitse [The wave motion of a three-component environment, under the action of load, running on a flat boundary], Vestnik MGU. Cer. 1.
Matematika, mekhanika [Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika], 1983, No. 4, pp. 100-106.
24. Rakhmatulin Kh.A., Dem'yanov Yu.A. Prochnost' pri intensivnykh kratkovremennykh nagruzkakh [Strength under intensive short-time loads], Universitetskaya kniga [University book]. Moscow: Izd. «Logos», 2016.
25. Ministerstvo oborony RF. Tsentral'nyy fiziko-tekhnicheskiy institut. Fizika yadernogo vzryva [The Ministry of defence of the Russian Federation. Central physico-technical Institute. Physics of a nuclear explosion]. Moscow: Nauka, 1997, Vol. 1, 528 p.

Comments are closed.