Article

Article title EXTENDING FUNCTIONALITY “ANGLE-PARAMETER-CODE” TRANSDUCERS IN THE CONTEXT OF THE THEORY OF RELATIVITY
Authors Yu.S. Smirnov, E.V. Yurasova, A.S. Makeeva
Section SECTION IV. STANDARDIZATION AND MANAGEMENT PRODUCT QUALITY
Month, Year 02, 2016 @en
Index UDC 681.5
DOI
Abstract The research is devoted to the peculiarities of construction of “angle-parameter-code” transducers. It is shown that the traditional structure to form only a digital equivalent of movement from the output signals of the angle-component solver is rather simple. Modern foreign “Resolver-to-Digital Converters” (RDC) form, unlike the single-channel analogue, a digital equivalent of speed. This simplifies an electromechanical component of mechatronic systems (MS) by eliminating the tachometer connected with the working mechanism and the actuating motor through a mechanical transmission or directly. In the latter case, the traditional use of the tachometer at low revolutions occurs due to fundamental difficulties of receiving reliable information about the traverse speed. This limits scopes of application of a progressive gearless electric drive. Presented developments are beholden for their continuous improvement to numerous applications of the angle-component solver. Their durability is defined by remarkable properties which are not surpassed by modern angle-data transmitters based on other physical principles. Before the advent of digital systems synchro and angle-component solver were the most accurate and reliable analog primary transducers of the angular location. Mechatronic systems created on the basis of these transducers meet the highest standards and are able to operate successfully in a wide range of environmental factors – temperature, humidity, vibration and strokes. Due to the advent of digital systems aroused attempts of the creation of converters with a digital output, in which a basic primary transducer maintained. The development of this area proved to be extremely successful – currently established foreign and domestic RDC compete with code converters in a resolving capacity, accuracy and dynamic indicators. On a set of required characteristics no type of angle converters can compete with them in certain cases.

Download PDF

Keywords Selsyns; sin-cosine rotary transformer; mechatronic systems; Resolver-to-Digital converter; rotary, optoelectronic and magnetic fields sensors; energoinformatics; Common Dateware mechatronic.
References 1. Smirnov Y.S., Safronov V.V., Anisimov Y.O. Common Dateware Mechatronic with Resolver-to-Digital Convertor, International Conference on Industrial Engineering, ICIE 2015, Procedia Engineering 129, 2015б pp. 736-742.
2. Kenjo T. and Sugawara A. Stepping motors and their microprocessor control, 2nd edition, Oxford University Press, 1994, 248 p.
3. Cronacher G. Design, performance and application of the Vernier resolver, The Bell System Technical journal, 1957, Issue XXXVI, Vol. 6, pp. 103-112.
4. Myasnikov V.A., Zverev A.E., Maksimov V.P. Preobrazovateli uglovykh peremeshcheniy v tsifrovoy kod [Angular displacement transducers in digital code]. Leningrad: Energiya, 1974, 203 p.
5. Balkovoi A. and Kallenbach E. A low cost RDC, Proc. of the 49th International Scientific Colloquium, Technical University of Ilmenau, 2004, pp. 338-342.
6. Balkovoy A.P., Tsatsenkin V.K. Pretsizionnyy elektroprivod s ventil'nymi dvigatelyami [Precision Drive with the Brushless Motor]. Moscow: ID MEI, 2010, 328 p.
7. Drury B. The Control Techniques Drives and Controls: Handbook, 2nd Edition, EMERSON. JET, 2009, 724 p.
8. Sylvan J. New options for Resolver-to-Digital conversion, Machine Design, October 22. 1987, pp. 141-146.
9. Tomasek J. Structural and performance fundamentals of sinewave-controlled brushless servo drives, Applied Power Electronics Conference and Exposition, 1989. APEC'89. Conference Proceedings 1989., Fourth Annual IEEE, 1989, pp. 173-182.
10. RDC 5028C. 16-Bit Monolithic Tracking Rad Tolerant Resolve-To-Digital Converter. 2014. Available at: http://www.aeroflex.com/RDC (accessed: 10 March 2016).
11. Anufriev V., Luzhbinin A., Shumilin S. Metody obrabotki signalov induktivnykh datchikov lineynykh i uglovykh peremeshcheniy [Signal processing techniques of inductive sensors of the linear and angular displacement], Sovremennaya elektronika [Modern electronics], 2014, No. 4, pp. 30-33.
12. Osnovy obrabotki dannykh. Vychislenie elementarnykh funktsiy [The basics of the data processing. Calculation of elementary functions. Available at: http://bobych.ru/referat/69/16419/1.html (accessed: 10 March 2016).
13. Proektirovanie algoritma vychisleniya elementarnoy funktsii s ispol'zovaniem tablichnoalgoritmicheskogo metoda [Design of the calculation algorithm of elementary functions using a table-algorithmic method]. Available at: http://knowledge.allbest.ru/programming/
c2c0b65635b2ad78a5c53a88521306c26.html (accessed: 10 March 2016).
14. Cafronov V.V. Sposob vydeleniya pachek pryamougol'nykh impul'sov iz nepreryvnoy posledovatel'nosti proizvol'nym asinkhronnym strob-signalom [Way to select packs of rectangular pulses of arbitrary contiguous asynchronous gate-signal], Komponenty i tekhnologii [Components and technologies], 2014, No. 9, pp. 128-131.
15. Goodenought F. JCs dictate motor shaft position, velocity and acceleration, Electronic Design, 188, Vol. 36, No. 3, pp. 52-53.
16. Woolvet G.A. Transdusers in Digital Systems. London, Peter Peregrines Publ., 1977, pp. 247.
17. Domrachev V.G., Matveevskiy V.R., Smirnov Yu.S. Skhemotekhnika tsifrovykh preobrazovateley peremeshcheniy [Circuitry digital converters movements]. Moscow: Energoatomizdat, 1987, 392 p.
18. Domrachev V.G., Smirnov Yu.S. Tsifroanalogovye sistemy pozitsionirovaniya [Digital to analog positioning systems]. Moscow: Energoatomizdat, 1990, 240 p.
19. Smirnov Y.S. Common Dateware of Robotics Mechatronic Converters Proc. of the Third ISMCR’93, Italy, Torino, 1993, As 1, pp. 13-18.
20. Smirnov Yu.S., Yurasova E.V., Funk T.A. Polifunktsional'nyy fazovyy preobrazovatel' peremeshcheniya [Polyfunctional Phase Displacement Transducer], XII Vserossiyskoe soveshchanie po problemam upravleniya VSPU-2014. Moskva, 16-19 iyunya 2014 g. [XII all-Russian conference on control problems the EVERYTHING-2014. Moscow, 16-19 June
2014]. Moscow: IPU im. V.A. Trapeznikova RAN, 2014, pp. 7171-7182.
21. Smirnov Yu.S. Elektromekhatronnye preobrazovateli [Electromechatronics Converters], Ed. byA.L. Shestakova. Chelyabinsk: Izdat. tsentr YuUrGU, 2013, 361 p.
22. Smirnov Y.S., Yurasova E.V., Funk T.A. Energoinformatics of a gearless mechatronic systems, International Conference on Industrial Engineering, ICIE 2015. Procedia Engineering 129, 2015, pp. 992-996.
23. Smirnov Yu.S., Yurasova E.V., Tsytovich L.I., Funk T.A. A mechatronic data component, Russian Electrical Engineering, Springer Publ., 2015, Vol. 86, No. 12, pp. 686-688.
24. RDC 19220/2/4 Series. 16-Bit Monolithic Tracking Resolver (LVDT)–to–Converter. Date Device Corporation. Available at: http://www.ddc-web.com/Products/101/Default.aspx (дата обращения: 10.03.2016).
25. AD2S1210. Variable Resolution. 10-Bit to 16-Bit R/D Converter with Reference Oscillator. Rev 2. Analog Devices: http://www.analog.com/media/en/technical-documentation/data-
sheets/AD2S1210.pdf (accessed: 10 March 2016).
26. Szymczak J., O’Meara Sh., Gealon J. and De La Rama C. Precision Resolver-to-Digital Converter Measures Angular Position and Velocity, Analog Dialogue 48-03, 2014 March, pp. 1-6.
27. Safronov V.V. Teoriya i praktika primeneniya datchikov ugla povorota na osnove SKVT [Theory and practice of angle sensor based on SCRT], Komponenty i tekhnologii [Components and technologies], 2014, No. 4, pp. 26-30.
28. Prokof'ev G., Stakhin V., Obednin A. K138NKh045 – mikroskhema preobrazovatelya fazy kvadraturnogo signala v kod polozheniya [К138НХ045 – phase converter chip for quadrature signal code provisions], Sovremennaya elektronika [Modern electronics], 2014, No. 6, pp. 2-4.
29. Anufriev V., Luzhbinin A., Shumilin S. Mikroskhema preobrazovatelya ugol–kod dlya induktivnykh datchikov [Angle-code converter chip for inductive sensors], Sovremennaya elektronika [Modern electronics], 2015, No. 3, pp. 2–5.
30. Nauka. Velichayshie teorii: Vyp. 1: Prostranstvo – eto vopros vremeni. Eynshteyn. Teoriya otnositel'nosti [Science. The great theory: Issue 1: The space - it's a matter of time. Einstein. Theory of relativity]. Moscuw: De Agostini, 2015, 176 p.
31. Energoinformatika. Bol'shaya entsiklopediya [Energoinformatic. Grand Encyclopaedia]: in 62 vol. Vol. 60. Moscow: TERRA, 2006, 440 p.

Comments are closed.