Authors V.P. Fedosov, D.G. Kovtun
Month, Year 03, 2016 @en
Index UDC 621.396.965.45, 621.396.969.181.234
Abstract In the paper the problem of the target velocity effect on the result of the signal processing is analyzed in a synthetic aperture radar. Radar system with synthetic aperture carrier stright motion with constant velocity is described in the model. The model was considered in a Cartesian coordinate system, while the target was located on the underlying surface. Selection of movement targets based on the Doppler shift frequency is not always possible to detect targets with a tangential speed when a selection for a tangential velocity provides a higher probability of target detection. The main analytical expressions are shown to describe the response of a matched trajectory signal if the target moves, matching or counter with the direction of movement of the carrier in case of side-looking radar station. Based on the linearly frequency modulated signal forming process is shown in the case of signal trajectory successive rectilinear movement of the carrier aircraft. It describes the effect of the target speed along the flight path on the carrier trajectory signal. A distortion of the law modulation trajectory signal and the signal filtering results in data corruption is presented. At low speeds, there is a fictional displacement target azimuth target coordinates from the actual initial position with decreasing amplitude. These analytical expressions show at low speeds, the goal is possible to obtain significant distortion of the trajectory of the signal. It has been shown that as a result of the trajectory of the signal distortion is possible to get a wrong information of the target range, and its geometrical dimensions.

Download PDF

Keywords Radar with synthetic aperture; LFM chirp signal; formation of a trajectory of a signal; selection of moving targets in the tangential direction
References 1. Axelsson S.R.J. Analysis of random step frequency radar and comparison with experiments, IEEE Trans. Geosci. Remote Sens., Apr. 2007, Vol. 45, No. 4, pp. 890-904.
2. Xu X. and Narayanan R. FOPEN SAR imaging using UWB step-frequency and random noise waveforms, IEEE Trans. Aerosp. Electron. Syst., Oct. 2001, Vol. 37, No. 4, pp. 1287-1300.
3. Garmatyuk D. and Narayanan R. Ultra-wideband continuous-wave random noise arc-SAR, IEEE Trans. Geosci. Remote Sens., Dec. 2002, Vol. 40, No. 12, pp. 2543-2552,
4. G.-S. Liu, H. Gu, W.-M. Su, H.-B. Sun, and J.-H. Zhang. Random signal radar - A winner in both the military and civilian operating environ-ments, IEEE Trans. Aerosp. Electron. Syst., Apr. 2003, Vol. 39, No. 2, pp. 489-498.
5. Dang Hongxing. Stepped frequency chirp signal SAR imaging, Synthetic Aperture Radar, 2007. APSAR 2007, 1st Asian and Pacific Conference on, 2007, pp. 14-18.
6. Kudrya A.I., Tolstov E.F., Chetverik V.N. Rasshirenie vozmozhnostey ispol'zovaniya M-posledovatel'nosti v RSA [The possibilities of using M-sequences, RAMI], II Vserossiyskie Armandovskie chteniya «Murom2012»: Materialy konferentsii [II all-Russian Romantowska read Муром2012": Materials of the conference], 2012, pp. 518-531.
7. Savost'yanov V.Yu. Issledovanie funktsii neopredelennosti chastotno-manipulirovannogo signala s vnutriimpul'snoy LChM [The study of ambiguity function of a frequency-manipulated signal with chirp vnutripolostnoe ], Voprosy radioelektroniki [Questions of radio-electronics], 2012, Vol. 2, No. 2, pp. 66-83.
8. Fedosov V.P. Prostranstvenno-vremennye metody izmereniya i kontrolya parametrov dvizheniya mass na granitsakh razdela sred [Space-time measurement and control of parameters of motion of the masses at the boundaries of the media], Primenenie sredstv lokatsii dlya kontrolya parametrov vodnoy ekosredy [the Application of location to control the parameters of water akorede]. Taganrog: TRTI, 1991, pp. 42-74.
9. Fedosov V.P., Surkov M.N., Chuykov V.M. Effektivnost' algoritmov selektsii ekologicheskikh ob"ektov na poverkhnosti razdela sred [Efficiency of algorithms of selection of environment objects on the surface of the partition environments], Izvestiya SKNTs VSh [University News North-Caucasian Region], 1993, No. 4, pp. 23-32.
10. Gorovoy E.N., Bezvesil'nyy A.A., Vavriv D.M. Korrektsiya radiometricheskikh oshibok na izobrazheniyakh pri ispol'zovanii dal'nostno-doplerovskogo algoritma v radiolokatorakh s sintezirovannoy aperturoy [Correction of radiometric errors in the images when using daleste-
Doppler algorithm in synthetic aperture radar], Radiofizika i elektronika [Telecommunications and Radio Engineering], 2013, Vol. 4, No. 2, pp. 45-50.
11. Fedosov V.P., Kalinovskiy P.Yu. Algoritm selektsii nazemnykh dvizhushchikhsya tseley [The algorithm of selection of ground moving targets], Radiotekhnika [Radioengineering], 2006, No. 2, pp. 86-89.
12. Fedosov V.P., Tsokur K.E. Uglomerno-doplerovskiy algoritm selektsii medlenno dvizhushchikhsya ob"ektov v RLS [Azimuth-Doppler selection algorithm slow-moving objects in radar], Izvestiya TRTU [Izvestiya TSURE], 1997, No. 1 (4), pp. 41-44.
13. Surkov M.N., Fedosov V.P. SDTs v RLS s sintezirovannoy aperturoy [In MTI, synthetic aperture radar], Izvestiya vuzov. Ser. Radioelektronika [Radioelectronics and Communications Systems], 1989, Vol. 32, No. 4, pp. 54-58.
14. Surkov M.N., Fedosov V.P. Tsifrovoy algoritm SDTs v RLS s sintezirovannoy aperturoy [Digital algorithm in the MTI, synthetic aperture radar], Mnogoprotsessornye vychislitel'nye struktury: Mezhduved. Sb. TRTI [Multiprocessor computer structures: Interdepartmental collection, TRTI]. Issue 11. Taganrog, 1989, pp. 65-68.
15. Meng D. et al. Topography-and aperture-dependent motion compensation for airborne SAR: A back projection approach, Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International. IEEE, 2014, pp. 448-450.
16. Sparr T. Moving target motion estimation and focusing in SAR image, Radar Conference, 2005 IEEE International. IEEE, 2005, pp. 290-294.
17. Yang J., Zhang Y., Kang X. A Doppler Ambiguity Tolerated Algorithm for Airborne SAR Ground Moving Target Imaging and Motion Parameters Estimation, Geoscience and Remote Sensing Letters, IEEE, 2015, Vol. 12, No. 12, pp. 2398-2402.
18. Zhou F. et al. Approach for single channel SAR ground moving target imaging and motion parameter estimation, Radar, Sonar & Navigation, IET, 2007, Vol. 1, No. 1, pp. 59-66.
19. Yang J., Zhang Y. An airborne SAR moving target imaging and motion parameters estimation algorithm with azimuth-dechirping and the second-order keystone transform applied, Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of, 2015, Vol. 8, No. 8,
pp. 3967-3976.
20. Henri M. Processing of Synthetic Aperture Radar Images, Willey – 2008, 390 p.
21. Radiovidenie. Radiolokatsionnye sistemy distantsionnogo zondirovaniya Zemli: uchebnoe posobie dlya vuzov [Radar systems remote sensing of the Earth: textbook for high schools], ed. by G.S. Kondratenkova. Moscow: Radiotekhnika, 2005, 368 p.
22. Shkol'nyy L.A. i dr. Radiolokatsionnye sistemy vozdushnoy razvedki, deshifrovanie radiolokatsionnykh izobrazheniy [The radar system of aerial reconnaissance, decryption, radar images], ed. byL.A. Shkol'nogo. Moscow: Izd-vo VVIA im. prof. N.E. Zhukovskogo, 2008.

Comments are closed.