Article

Article title INVESTIGATION OF DISTRIBUTION OF ELECTROMAGNETIC FIELDS IN BIOLOGICAL OBJECTS
Authors N.N. Kisel
Section SECTION II. MODELING OF PHYSICAL PROCESSES AND SYSTEMS
Month, Year 03, 2016 @en
Index UDC 621.396.93
DOI
Abstract Attention to the study to determine the degree of influence of electromagnetic effects on the user is increased by the expansion of the functionality of mobile communications and a significant increase in the time of their subscribers use throughout the day. Creating adequate electrodynamic model of biological tissue to study the influence of electromagnetic waves due to the necessity of solving the problem of the excitation of the electromagnetic wave in a dramatically changing parameters (skin, muscle, bone, fat tissue). This characteristic inhomogeneity are comparable to the wavelength or smaller than it, which is why the use of the approximate number of asymptotic methods for solving the corresponding model problems is practically impossible. A rigorous method for computing field inside a person can be done only on the basis of three-dimensional modeling of a biological medium with arbitrary parameters of the permittivity and conductivity, which lies at the limits of the most modern computer technology. Studies conducted for electrodynamic simplified models of biological tissue, in particular, the model is represented as a multilayer medium with flat layers, and a multilayer of a sphere or ellipsoid. For a description of the head model are more preferred model constructed on the basis of multi-layer spheres or ellipsoids, which are located within the volume of a more complex configuration, which describes the brain. Modeling using the scope is particularly advantageous and widely used, allowing to perform a primary SAR estimation by the example of the multi-layer sphere. Research work carried out using a three-layer model of the human head in the form of an ellipsoid of revolution with a truncated ellipsoid inside to describe the human brain and two cell phone models with a microstrip antenna and a spiral antenna. Distribution Calculations of electromagnetic fields and SAR performed in FEKO program. These results suggest that the spatial peak SAR averaged over 10 g/cm3 model of the human body are obtained below the threshold recommended by international standards. Increasing the distance between the mobile device and the head can be significantly reduced SAR levels. In this case, however, there is no change in position of the region where the peak SAR values are reached.

Download PDF

Keywords Specific absorbed power; the SAR; microstrip antenna; the biological media
References 1. Hanus, X., Luong, M. and Lethimonnier, F. (2005) Electromagnetics Fields and SAR Computations in a Human Head with a Multi-Port Driven RF Coil at 11.7 Tesla. Proceedings of the International Society for Magnetic Resonance in Medicine, 13, 876.
2. Khalatbari S., Sardari D., Mirzaee A., A. Sadafi H.A. Calculating SAR in Two Models of the Human Head Exposed to Mobile Phones Radiations at 900 and 1800 MHz, Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29.
3. Stavroulakis P. Biological Effects of Electromagnetic Fields, Springer, 2002.
4. Person T., Tornevich K. Mobil'naya svyaz' i zdorov'e cheloveka [Mobile communication and human health], Mobil'nye telekommunikatsii [Mobile Telecommunications], 2004, No. 1, pp. 25-30.
5. Schwan H.P. Classical theory of microwave inteactions with biological system. In.: The physical bases of electromagnetic interations with biological system. Rockwille, Maryland. 1977, 70 p.
6. Paolo Bernardi, etc. Specific Absorption Rate and Temperature Increases in the Head of a Cellular-Phone User, IEEE Trans. on MTT, July 2000, Vol. 48, No. 7.
7. Lagroy I. Poulletier de Ganas F. Effect of GSM 900 radiofrequency on apoptosis of immune and nervous cells, Priceedings of the XXVIIth General Assembly of the International Union of Radio Science, Netherlands, 2002.
8. Xu Li, Henri Tandradinata, Susan C. Hagness. Anatomically realistic FDTD modeling of microwave interactions with human breast, Priceedings of the XXVIIth General Assembly of the International Union of Radio Science, Netherlands, 2002.
9. Gay A.V., Lemann Yu.F., Strounbridzh Dzh. Primenenie elektromagnitnoy energii v terapii [The application of electromagnetic energy in therapy], TIIER [Proceedings of the Institute of engineers on electrical and electronics], 1974, Vol. 62, No. 1, pp. 66-93.
10. Kisel N.N., Grishchenko S.G. Structured modeling of the biological media in the form of grid resistive wires, In the collection: CriMiCo 2014 - 2014 24th International Crimean Conference Microwave and Telecommunication Technology. Conference Proceedings, 2014, pp. 1065-1066.
11. Kisel' N.N., Grishchenko S.G. Ispol'zovanie effekta depolyarizatsii elektromagnitnoy volny dlya zadach meditsinskoy diagnostiki [Using the depolarization effect of electromagnetic wave problems for medical diagnosis], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, № 11 (160), pp. 99-109.
12. Grishchenko S.G., Kisel' N.N., Vaganova A.A. Rasseyanie elektromagnitnykh von telom vrashcheniya, raspolozhennym na mnogosloynom poluprostranstve [Scattering of electromagnetic waves by body of revolution located on multilayered half-space], Izvestiya YuFU.
Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 11 (148), pp. 141-150.
13. Kisel' N.N., Klimenko P.P. Matematicheskoe modelirovanie vzaimodeystviya eletkromagnitnogo polya s biologicheskimi sredami [Mathematical modeling of the interaction eletcro-magnetic field with biological media], Deponirovannaya rukopis' VINITI № 1380-B2006 14.11.2006 [Deposited manuscript VINITI, № 1380-B2006 14.11.2006].
14. Kisel' V.N., Kisel' N.N., Alpatova A.V. Raschet elektromagnitnogo polya v ob"eme krugovogo dielektricheskogo tsilindra s neodnorodnym vklyucheniem [The calculation of the electromagnetic field in the volume of dielectric circular cylinder with inhomogeneous inclusion], Radiotekhnika i elektronika [Journal of Communications Technology and Electronics], 2003, Vol. 48, No. 1, pp. 64-69.
15. Kisel' V.N., Alpatova A.V., Kisel' N.N. Effektivnyy algoritm rascheta elektromagnitnogo polya v neodnorodnom tsilindre [An efficient algorithm of calculation of electromagnetic fields in inhomogeneous cylinder], Izvestiya TRTU [Izvestiya TSURe], 2001, No. 1 (19), pp. 28-32.
16. Alpatova A.V., Kisel' N.N., Kisel' V.N. Issledovanie elektromagnitnogo polya vnutri krugovogo neodnorodnogo tsilindra [Study of electromagnetic field inside an inhomogeneous circular cylinder], Izvestiya TRTU [Izvestiya TSURe], 2001, No. 3 (21), pp. 45-46.
17. Kisel' N.N., Alpatova A.V., Kisel' V.N. Razrabotka i issledovanie priblizhennykh metodik ucheta tonkikh pokrytiy [Development and investigation of approximate IU-nique accounting for thin coatings], Izvestiya TRTU [Izvestiya TSURe], 2001, No. 3 (21), pp. 46-47.
18. Kisel' N.N., Kisel' V.N., Obukhovets V.A. Modelirovanie vzaimodeystviya SVCh-kolebaniy s biologicheskimi strukturami [Modeling the interaction of microwave oscillations with biological structures], Izvestiya TRTU [Izvestiya TSURe], 1995, No. 1 (1), pp. 37-38.
19. Kisel' N.N., Grishchenko S.G., Derachits D.S. Issledovanie nizkoprofil'nykh mikropoloskovykh antenn [Study conformal low-profile patch antenna], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 3 (164), pp. 240-248.
20. Noaman Kh.I.A., Galeb Kh.A.N., Kisel' N.N. Modelirovanie i optimizatsiya kharakteristik mikropoloskovoy antenny dlya WIMAX svyazi [Modeling and optimization of characteristics of microstrip antennas for WIMAX communication], Novye tekhnologii i problemy tekhnicheskikh nauk: Sbornik nauchnykh trudov po itogam mezhdunarodnoy nauchno-
prakticheskoy konferentsii. Innovatsionnyy tsentr razvitiya obrazovaniya i nauki [New technologies and technical problems of science: Collection of scientific papers on the results of international scientific-practical conference. Innovation center for the development of education and science], 2014, pp. 115-118.
21. Galeb Kh.A.N., Noaman Kh.I.A., Kisel' N.N. Modelirovanie i optimizatsiya kharakteristik mikropoloskovoy antenny s ispol'zovaniem SIMPLEX-metoda [Simulation and optimization of microstrip antenna characteristics using SIMPLEX method], Novye tekhnologii i problemy
tekhnicheskikh nauk: Sbornik nauchnykh trudov po itogam Mezhdunarodnoy nauchno-prakticheskoy konferentsii. Innovatsionnyy tsentr razvitiya obrazovaniya i nauki [New technologies and technical problems of science: Collection of scientific papers on the results of International scientific-practical conference. Innovation center for the development of education
and science], 2014, pp. 118-121.
22. Khamed M., Kisel' N.N. Modelirovanie kharakteristik mikropoloskovoy antennoy reshetki S-diapazona [The modeling of the characteristics of microstrip antenna array S-band], Novye tekhnologii i problemy tekhnicheskikh nauk: Sbornik nauchnykh trudov po itogam
Mezhdunarodnoy nauchno-prakticheskoy konferentsii. Innovatsionnyy tsentr razvitiya obrazovaniya i nauki [New technologies and technical problems of science: Collection of scientific papers on the results of International scientific-practical conference. Innovation center for the development of education and science], 2014, pp. 121-124.
23. Kisel' N.N., Grishchenko S.G., Chelobitchikov M.O. Issledovanie kharakteristik mikropoloskovoy antenny na podlozhke s neodnorodnym zapolneniem [Study of characteristics of microstrip antennas on a substrate with inhomogeneous filling], Problemy tekhniki i tekhnologiy
telekommunikatsiy PTiTT-2014; Opticheskie tekhnologii v telekommunika-tsiyakh OTT-2014:
Materialy Mezhdunarodnykh nauchno-tekhnicheskikh konferentsiy [Problems of technics and technology of telecommunications Ptit-2014; Optical technologies in telecommunications OTT-2014: the Materials of International scientific-technical conferences], 2014, pp. 54-55.
24. Kisel' N.N., Grishchenko S.G., Kardos D.A. Optimizatsiya parametrov kombinirovannoy mikropoloskovoy antenny [Optimisation dual-resonant patch antenna], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 11 (136), pp. 25-31.
25. Pelosi M., Franek O., Knudsen M.B., Pedersen G.F., and Andersen J.B. Antenna Proximity Effects for Talk and Data Modes in Mobile Phones, IEEE Antennas and Propagation Magazine, June 2010, Vol. 52, No 3, pp. 15-27.

Comments are closed.