Article

Article title QUANTITATIVE CHARACTERISTICS OF THE DEGREE OF ENTANGLEMENT
Authors V.P. Guzik, S.M. Gushansky, V.S. Potapov
Section SECTION II. MODELING OF PHYSICAL PROCESSES AND SYSTEMS
Month, Year 03, 2016 @en
Index UDC 004.032
DOI
Abstract This article describes the concept of the absolute and partial entanglement, conditions of their implementation and impact on the process and the result of quantum algorithms and quantum systems. Also held and a schematic illustration of the process of quantum teleportation. As part of the implementation of graphically reflected the impact of the partial entanglement teleportation in correct given the magnitude of error. Spend the development a number of conditions for the quantitative characterization of the state of confusion. Also analyzed and described the most known types of measures of quantum entanglement. The relevance of this trend in the quantum world is great importance in the development and implementation of quantum calculators, as without simulation of quantum algorithms, their results become difficult and sometimes impossible to do quantum computing technology - computers and quantum algorithms, quantum cryptanalysis. We also consider a number of other equally important reasons for the relevance of subjects: developed quantum model will clearly see the strengths and weaknesses of the model, as well as to improve it in the future; it is not created a quantum computer, the only opportunity to explore practical quantum computing - quantum physics simulation of the calculator, including a set of quantum algorithms, the classic or use of various elements of physics and chemistry in not typical for these conditions and directions; In case of a quantum computer simulation of its prototype will be a visual aid for understanding the basic processes and phenomena, which have made it possible to create it; designed with a set of quantum model of quantum algorithms and its proven benefits will make it easier to attract investment in the physical creation and improvement of a quantum computer. The scientific novelty of this area is primarily expressed in constant updating and supplementing the field of quantum algorithms, and relationship of quantum algorithms and such important properties as confusion and did poorly lit in the world. However, this phenomenon and its process can fully disclose the nature of the work not only of quantum algorithms, but all of quantum computing in general. Construction of new quantum algorithms and systems is a dynamic area, as evidenced by the number of existing quantum (45 algorithms and 160 articles, of which at least 14 were written in 2013 and 2014). Although quantum computing, the basis for the majority of which is quantum entanglement, is not yet ready to move from theory to practice, however, one can reasonably speculate what form, perhaps, a quantum computer will take, or what is more important for on what the design of the programming language interface can interact with a quantum computer.

Download PDF

Keywords Partial entanglement; quantum teleportation; positive partial reinstallation; distilled entanglement; separable state; entropy
References 1. Potapov V.S., Gushanskiy S.M. Issledovanie roli zaputannosti v postroenii i realizatsii kvantovykh algoritmov [Investigation of the role of involvement in building and implementation of quantum algorithms], Informatsionnye tekhnologii, sistemnyy analiz i upravlenie (ITSAiU-2015): Sbornik trudov XIII Vserossiyskoy nauchnoy konferentsii molodykh uchenykh,
aspirantov i studentov, g. Taganrog, 16-18 dekabrya 2015 g. [Information technology, system analysis and management (Idayu-2015): proceedings of the XIII all-Russian scientific conference of young scientists, postgraduates and students, Taganrog, 16-18 Dec 2015]. Rostov-on-Don: Izd-vo YuFU, 2016, Vol. 3, pp. 123-129.
2. Shredinger E. Sovremennoe sostoyanie kvantovoy mekhaniki [Modern status of quantum mechanics], Uspekhi khimii [Uspekhi Khimii], 1936, Vol. 5, pp. 390.
3. Bell J.S. On the Einstein Podolsky Rosen paradox, Physics, 1964, Vol. 1, No. 3, pp. 195-200.
4. Guzik V.F., Gushanskiy S.M., Kasarkin A.V. Ispol'zovanie kvantovoy zaputannosti dlya modelirovaniya parametra soglasovannosti v zadachakh teorii igr [Usage of quantum entanglement for simulation of consistency parameter in game theory problem], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 4 (153), pp. 22-28.
5. Von Neumann entropy. Available at: https://en.wikipedia.org/wiki/ Von_Neumann_entropy (accessed 14 March 2016).
6. Preskill J. Lecture Notes for Physics 229: Quantum Information and Computation. California Institute of Technology, 1998.
7. Kvantovaya teleportatsiya [Quantum teleportation]. Available at: https://ru.wikipedia.org/wiki/Kvantovaya_teleportatsiya (accessed 16 March 2016).
8. Guzik V., Gushanskiy S., Polenov M., Potapov V. Models of a quantum computer, their characteristics and analysis, 2015 9th International Conference on Application of Information and Communication Technologies (AICT). – Institute of Electrical and Electronics Engineers, 2015, pp. 583-587.
9. Kulik S.D., Berkov A.V., Yakovlev V.P. Vvedenie v teoriyu kvantovykh vychisleniy (metody kvantovoy mekhaniki v kibernetike): uchebnoe posobie [Introduction to the theory of quantum computing (quantum mechanics methods in Cybernetics): a tutorial]. In 2 books. Book 2. Moscow: MIFI, 2008, 532 p.
10. Guzik V.F., Gushanskiy S.M., Potapov V.S. Provedenie polnogo faktornogo eksperimenta dlya kharakteristik modeli kvantovogo vychislitelya [Performance a full factorial experiment for the characteristics models of quantum calculators], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 3 (164), pp. 46-54.
11. Lipkin A.I. Kontseptsii sovremennogo estestvoznaniya. Ch. 1. Nauki o nezhivom (fizika, khimiya, sinergetika): kurs lektsiy [Concepts of modern natural science. Part 1. The science of the inanimate (physics, chemistry, synergy): a course of lectures]. Moscow – Berlin: Direkt – Media, 2015, 151 p.
12. Gil'bertovo prostranstvo [On a Hilbert space]. Available at: https://ru.wikipedia.org/wiki/Gil'bertovo_prostranstvo (accessed 20 March 2016).
13. Plenio M., Virmani S. Spin chains and channels with memory, Phys. Rev. Lett., 2007, Vol. 99, pp. 120504.
14. Additivnost' [Additivity]. Available at: https://ru.wikipedia.org/wiki/Additivnost' (accessed 22 March 2016).
15. Bargatin I.V., Grishanin B.A., Zadkov V.N. Zaputannye kvantovye sostoyaniya atomnykh sistem [Entangled quantum States of atomic systems], UFN [Uspekhi Fizicheskikh Nauk], 2001, Vol. 171, pp. 625.
16. Bennett C.H. et. al. Mixed-state entanglement and quantum error correction, Phys. Rev. A, 1996, Vol. 54, pp. 3824.
17. Horodecki M., Horodecki P., Horodecki R. Separability of mixed states: necessary and sufficient conditions, Phys. Rev. Lett., 1996, Vol. 223, pp. 1-8.
18. Vidal G. and Werner R.F.A. Computable measure of entanglement, Phys. Rev. A, 2002, Vol. 65, pp. 032314.
19. Wootters W.K. Entanglement of formation and concurrence, Quant. Inf. Comp., 2001, Vol. l, pp. 27-44.
20. Bennett C.H., Bernstein H.J., Popescu S. and Schumacher B. Concentrating partial entanglement by local operations, Phys. Rev. A, 1996, Vol. 53, pp. 2046.
21. Abdulvagabova S.G. Opredelenie secheniya kogerentnogo rasseyaniya neytronov na svyazannykh protonakh [The definition section of the coherent neutron scattering on the bound-tion of the protons]. Bakinskiy Gosudarstvennyy Universitet. Baku, Azerbaydzhan, 2010, Vol. 1, pp. 52.
22. Matritsa plotnosti [The matrix density]. Available at: https://ru.wikipedia.org/wiki/Matritsa_plotnosti (accessed 27 March 2016).
23. Makhlouf A., Paal E., Silvestrov S., Stolin A. Algebra, Geometry and Mathematical Physics: AGMP, Mulhouse, France, October 2011, 683 p.
24. Terhal B.M. Detecting quantum entanglement, Theor. Comput. Sci., 2002, Vol. 287, pp. 313.
25. Ermitov operator [A Hermitian operator]. Available at: https://ru.wikipedia.org/wiki/Ermitov_operator (accessed 04 April 2016).
26. Giperploskost' [The hyperplane]. Available at: https://ru.wikipedia.org/wiki/Giperploskost' (accessed 07 April 2016).

Comments are closed.