Article

Article title COMPLEX METHOD OF SITUATIONAL PLANNING BEHAVIOR OF MOBILE ROBOTIC OBJECT FOR THE TWO-DIMENSIONAL NON-STATIONARY SPACE IN THE CONDITIONS OF PARTIAL UNCERTAINTY
Authors A.O. Pyavchenko, V.A. Pereverzev
Section SECTION III. MONITORING AND CONTROL IN TECHNICAL SYSTEMS
Month, Year 03, 2016 @en
Index UDC 007.52+004.896: 656.052.48: 519.876.5
DOI
Abstract The results of research carried out situational planning method developed by the authors. The method was designated CDVH-NN (distance vector hystogram – neural network complex method). As DVH-NN, this complex method is focused on the use of neural basis. The proposed modification of the method includes algorithmic basis, which provide automatically customizable safe level of mobile robotic object (MPO) and exception of its collision with moving obstacles that are on a collision course with the robot. New features of the method are obtained by use of short-term forecasting of the external environment. Model robotic representation of the external environment is based on a continuously updated real-time hybrid vector velocity model centers of mass displacements of moving obstacles, detected by on-board vision system (VS) of the robot with regard to adopted simplifications and limitations. Accounting for dimensions and inertial properties of MRO is made by means of the angular expansion of obstacles with regard to the vector diagrams of distances, periodically coming in real time from VS MRO. The method provides a calculation and auto tracking the short-term trajectory of moving obstacles, a calculation the spatial and zones of probable collisions with them, a decision about the direction of dynamic displacement of robot velocity vector to a safe direction by specifying the recommended value of the linear velocity of the movement. The effectiveness of the new features of the method is confirmed by the simulation results, obtained in the MATLAB. Another distinctive feature of this solution is the ability to create an efficient hardware and software implementation of the modified method with the use of technology "system-on-programmable-chip» (SOPC), operating in real time.

Download PDF

Keywords Mobile robotic object, system of positional-trajectory control, complex method of situational planning behavior, interpolation-extrapolation calculation of the object trajectory, moving obstacle, zone of probable collision, two-dimensional space, distances prognosis, parallel-pipelined neural situational planner, real time
References 1. Beloglazov D.A., Guzik V.F., Kosenko E.Yu., Krukhmalev V.A., Medvedev M.Yu., Pereverzev V.A., Pshikhopov V.Kh., P'yavchenko A.O., Saprykin R.V., Solovov'ev V.V., Finaev V.I., Chernukhin Yu.V., Shapovalov I.O. Intellektual'noe planirovanie traektoriy podvizhnykh ob"ektov v sredakh s prepyatstviyami [Intelligent planning of the trajectories of moving objects in environments with obstacles], ed. by V.Kh. Pshikhopova. Moscow: Fizmatlit, 2014, 300 s. ISBN 978-5-9221-1595-7.
2. Borenstein J., Koren Y. he vector field histogram - fast obstacle avoidance for mobile robots, IEEE Journal of Robotics and Automation, 1991, Vol. 7, No. 3, pp. 278-288,
3. Borenstein J., Koren Y. Real-time Obstacle Avoidance for Fast Mobile Robots in Cluttered Environments, Reprint of Proceedings of the 1990 IEEE International Conference on Robotics and Automation, Cincinnati, Ohio, May 13-18, 1990, pp. 572-577.
4. Ulrich I., Borenstein J. VFH+: Reliable obstacle avoidance for fast mobile robots, in Proc. IEEE International Conference on Robotics and Automation, 1998, pp. 1572-1577.
5. Ulrich I., Borenstein J. VFH*: Local obstacle avoidance with look-ahead verification, in Proc. IEEE International Conference on Robotics and Automation, 200, pp. 2505-2511.
6. Kalyaev I.A., Kukharenko A.P. NII MVS TRTU – 30 let: istoriya, dostizheniya, perspektivy [Sri MVS TSURE – 30 years: history, achievements, vision adjustments], Iskusstvennyy intellect [Artificial Intelligence], 2002, No. 3, pp. 25-44. Available at: http://www.iai.donetsk.ua/
public/JournalIAI_2002+3/02_Kalyaev_Kukharenko.pdf (accessed 20 March 2016).
7. Kalyaev A.V., Chernukhin Yu.V., Noskov V.N., Kalyaev I.A. Odnorodnye upravlyayushchie struktury adaptivnykh robotov [Homogeneous control structures for adaptive robots], ed. by A.V. Kalyaeva i Yu.V. Chernukhina. Moscow: Nauka. Gl. red. fiz. mat. lit., 1990, 152 p.
8. Kalyaev I.A., Gayduk A.R. Odnorodnye neyropodobnye struktury v sistemakh vybora deystviy intellektual'nykh robotov [Homogeneous neuron-like structures in systems of action selection of intelligent robots]. Moscow: Yanus-K, 2000, 280 p.
9. Guzik V.F., Pereverzev V.A., P'yavchenko A.O., Saprykin R.V. Printsipy postroeniya ekstrapoliruyushchego mnogomernogo neyrosetevogo planirovshchika intellektual'noy sistemy pozitsionno-traektornogo upravleniya podvizhnymi ob"ektami [Design principles for extrapolating multidimensional neural-network planner for intellectual position-trajectory control system of moving objects], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2016, No. 2 (175), pp. 67-80.
10. Chernukhin Yu.V., Saprykin R.V., Butov P.A., Dolenko Yu.S. Mobil'naya robototekhnicheskaya platforma s perestraivaemoy geterogennoy sistemoy upravleniya [Mobile robotic platform with configurable heterogeneous control system], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 1 (126), pp. 96-103.
11. Gong J., Duan Y., Man Y., Xiong G. VPH+: An enhanced vector polar histogram method for mobile robot obstacle avoidance, in Proc. IEEE International Conference on Mechatronics and Automation, 2007.
12. P'yavchenko A.O. Pereverzev V.A. Neyrosetevaya realizatsiya DVH-metoda planirovaniya peremeshcheniya robotizirovannogo ob"ekta [Neural network implementation of DVH-method of planning the movement of a robotic object], Materialy Desyatoy Vserossiyskoy nauchno-prakticheskoy konferentsii «Perspektivnye sistemy i zadachi upravleniya» i Shestoy molodezhnoy shkoly – seminara «Upravlenie i obrabotka informatsii v tekhnicheskikh
sistemakh» [Proceedings of the Tenth all-Russian scientific-practical conference "advanced systems and control problems" and the Sixth youth school – seminar "Management and processing of information in technical systems"]: in 2 vol. Vol. II. Rostov-on-Don: Izd-vo YuFU, 2015, pp. 277-288. (ISBN: 978-5-9275-1533-6).
13. Pshikhopov V.Kh. Pozitsionno-traektornoe upravlenie podvizhnymi ob"ektami: monografiya [Position-trajectory control of mobile objects: monograph]. Taganrog: Izd-vo TTI YuFU, 2009, 183 p.
14. Pshikhopov V.Kh., Medvedev M.Yu. Upravlenie podvizhnymi ob"ektami v opredelennykh i neopredelennykh sredakh [Management of mobile objects in certain and uncertain environments]. Moscow: Nauka, 2011, 350 p.
15. Kuz'min S.Z. Tsifrovaya radiolokatsiya. Vvedenie v teoriyu [Digital radar. Introduction to the theory]. Kiev: Izd-vo KVITs, 2000, 428 p.
16. Prokladka na manevrennom planshete [Padding maneuvering tablet]. Available at: http://crew-help.com.ua/stati_part.php?
tema=dk/PROKLADKA%20NA%20MANEVRENNOM%20PLANShETE.htm (accessed 21 November 2015).
17. Manevrirovanie korablya. Metod otnositel'nogo dvizheniya. Treugol'niki manevrirovaniya, ikh kharakteristika i priemy resheniya. Osnovnye element [The maneuvering of the ship. The method of relative motion. Triangles manubrio-tion, their characteristics and methods of solution. The basic elements of]. Available at: http://vunivere.ru/work16018 (accessed 21 November 2015).
18. Gusak A.A. i Gusak G.M., Brichkova E.A. Spravochnik po vysshey matematike [Handbook on higher mathematics]. Minsk: Tet-raSistems. 1999, 640 p.
19. Korn G., Korn T. Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov [Handbook on mathematics for researchers and engineers]. Moscow: Nauka, 1968.
20. P'yavchenko O.N. Konechno-raznostnye metody resheniya obyknovennykh differentsial'nykh uravneniy v mikrokomp'yutera: uchebnoe posobie [Finite-difference methods of solving ordinary differential equations in a microcomputer: a tutorial]. Taganrog: Izd-vo TRTU, 2000, 96 p.
21. Fiorini P. and Shiller Z. Motion Planning in Dynamic Environments Using Velocity Obstacles, Int. J. of Robotics Research, 1998, Vol. 17, No. 7, pp. 760-772,
22. Seung-Hwan Lee, Gyuho Eoh, and Beom H. Lee. Robust Robot Navigation using Polar Coordinates in Dynamic Environments," Journal of Industrial and Intelligent Information, March 2014, Vol. 2, No. 1, pp. 6-10. Doi: 10.12720/jiii.2.1.6-10. Available at: http://www.jiii.org/ index.php?m=content&c=index&a=show&catid=37&id=76 (accessed 11 February 2016).
23. Shiller Z., Large Fr., Sekhavat S., Laugier Chr. Motion Planning in Dynamic Environments: Obstacles Moving Along Arbitrary Trajectories. Available at: http://www.liralab.it/IIT_school/files/ Papers/ WF-05-06.pdf (accessed 11 February 2016).
24. Ellips Masehian, Yalda Katebi Robot Motion Planning in Dynamic Environments with Moving Obstacles and Target // International Science Index, Computer and Information Engineering, 2007, Vol. 1, No. 5. Available at: http://internationalscienceindex.org/ publications/513/robot-motion-planning-in-dynamic-environments-with-moving-obstacles-and-target-
(accessed 11 February 2016).
25. Jamie Snape, Jur van den Berg, Stephen J. Guy, Dinesh Manocha The hybrid reciprocal velocity obstacle, IEEE Trans. Robot., 2011, Vol. 27.
26. P'yavchenko A.O., Kushchenko A.S., Kovalenko A.A. Gibridnaya realizatsiya neyrosetevogo DVH-metoda planirovaniya peremeshcheniya avtonomnykh mobil'nykh ob"ektov [Hybrid implementation of neural network DVH-method of planning the movement of the Autonomous mobile objects], Informatsionnye tekhnologii, sistemnyy analiz i upravlenie (ITSAiU-2014): Sbornik trudov XII Vserossiyskoy nauchnoy konferentsii molodykh uchenykh, aspirantov i
studentov, g. Taganrog, 18-19 dekabrya 2014 g. [Information technologies, system analysis and management (Idayu-2014): proceedings of the XII all-Russian scientific conference of young scientists, postgraduates and students, Taganrog, 18-19 December 2014]. Rostov-on-Don: Izd-vo YuFU, 2015, Vol. 1, pp. 134-141. (ISBN: 978-5-9275-1495-3).

Comments are closed.