Article

Article title CONTROL THICKNESS AND POROSITY OF THE TiO2 FILM DURING THE LASER PROCESSING
Authors S.P. Malyukov, A.V. Sayenko
Section SECTION I. ELECTRONICS
Month, Year 04, 2016 @en
Index UDC 621.383
DOI
Abstract Presented research capabilities control thickness and porosity of TiO2 film during its processing (sintering) pulsed Nd:YAG-laser with a wavelength of 1064 nm for use in the dye-sensitized and perovskite solar cells to improve their photovoltaic characteristics. The choice of infrared laserradiation causes the efficiency of the laser sintering over the entire thickness. Structure of TiO2 film after laser radiation sintering with a pulse energy of 100–300 mJ nanoporous persists it is necessary for the efficient conversion of solar radiation into electricity. It is shown that increasing the pulse energy reduces the thickness of 6,92 µm to 10,18 µm and a porosity of 0,45 to 0,20, and changing the shape and the size of TiO2 nanoparticles in the film. It was found that when the pulse energy of the laser sintering 150–200 mJ achieved optimal values porosity of 0,25–0,3 and thickness of 7,5–8 µm TiO2 film, which theoretically could lead to an increase solar conversion efficiency solar cells. Laser sintering for these solar cells leads to create an electrical contact between the TiO2 nanoparticles, as well as to enhance the electron diffusion coefficient, reduce recombination losses in the TiO2 film and improve charge collection efficiency. Besides laser sintering method it has great potential for use in the production technology of high-efficiency solar cells.

Download PDF

Keywords Nanoporous TiO2 film; laser processing; solar cell
References 1. O’Regan B., Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature (London), 1991, Vol. 335, pp. 737-741.
2. Hagfeldt A., Boschloo G., Licheng Sun, Lars Kloo, Pettersson H. Dye-Sensitized Solar Cells, Chem. Rev., 2010, Vol. 110, pp. 6595-6663.
3. Di Wei. Review Dye Sensitized Solar Cells, Int. J. Mol. Sci., 2010, Vol. 11, pp. 1103-1107.
4. Hagfeldt A., Gratzel M. Molecular Photovoltaics, Acc. Chem. Res., 2000, Vol. 33, pp. 269-277.
5. Kojima A., Teshima K., Shirai Y., Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 2009, Vol. 131, pp. 6050-6051.
6. Gratzel M. The light and shade of perovskite solar cells, Nature Materials, 2014, Vol. 13, pp. 838-842.
7. Malyukov S.P., Saenko A.V. Razrabotka modeli sensibilizirovannogo krasitelem solnechnogo elementa [Development model of dye-sensitized solar cells], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 1 (150), pp. 120-126.
8. Benkstein K.D., Kopidakis N., J. van de Lagemaat, Frank A.J. Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells, J. Phys. Chem. B, 2003, Vol. 107, pp. 7759-7767.
9. Linyun Liang, Songyuan Dai, Linhua Hu, Fantai Kong, Weiwei Xu, Kongjia Wang. Porosity Effects on Electron Transport in TiO2 Films and Its Application to Dye-Sensitized Solar Cells, J. Phys. Chem. B., 2006, Vol. 110, pp. 12404-12409.
10. Park N.-G., J. van de Lagemaat, Frank A.J. Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells, J. Phys. Chem. B, 2000, Vol. 104, pp. 8989-8994.
11. Ashi Ofir, Snir Dor, Larisa Grinis, Arie Zaban, Thomas Dittrich, Juan Bisquert. Porosity dependence of electron percolation in nanoporous TiO2 layers, The Journal of Chemical Physics, 2008, Vol. 128, pp. 5-17.
12. Dittricha Th., Ofir A., Tirosh S., Grinis L., Zabana A. Influence of the porosity on diffusion and lifetime in porous TiO2 layers, Applied Physics Letters, 2006, Vol. 88, pp. 111-123.
13. Mincuzzi G., Vesce L., Reale A., A. Di Carlo, Brown T.M. Efficient sintering of nanocrystalline titanium dioxide films for dye solar cells via raster scanning laser, Applied Physics Letters, 2009, Vol. 95, pp. 308-317.
14. Kim H., Auyeung R.C.Y., Ollinger M., Kushto G.P., Kafafi Z.H., Pique A. Laser-sintered mesoporous TiO2 electrodes for dye-sensitized solar cells, Appl. Phys. A, 2006, Vol. 83, pp. 73-76.
15. Mincuzzi G., Schulz-Ruhtenberg M., Vesce1 L., et al. Laser processing of TiO2 films for dye solar cells: a thermal, sintering, throughput and embodied energy investigation, Progress in photovoltaics: research and applications, 2014, Vol. 22, pp. 308-317.
16. Junghwan Yoon, Minhea Jin, Myeongkyu Lee. Laser-Induced Control of TiO2 Porosity for Enhanced Photovoltaic Behavior, Advanced Materials, 2011, Vol. 23, pp. 3974-3978.
17. Malyukov S.P., Sayenko A.V. Laser sintering of a porous TiO2 film in dye-sensitized solar cells, Journal of Russian Laser Research, 2013, Vol. 34, pp. 531-537.
18. Pugachevskiy M.A. Morfologicheskie i fazovye izmeneniya ablirovannykh chastits TiO2 pri termicheskom otzhige [Morphological and phase changes absorbency particles of TiO2 under thermal annealing], Pis'ma v ZhTF [Technical Physics Letters], 2012, Vol. 38, Issue 7, pp. 56-63.
19. Parfenov V.A. Lazernaya mikroobrabotka materialov: ucheb. Posobie [Laser micromachining: a training manual]. St. Petersburg: Izd-vo SPbGETU «LETI», 2011, 59 p.
20. Malyukov S.P., Kulikova I.V., Sayenko A.V., Klunnikova Yu.V. Optimization of the structure nanoporous TiO2 film structure in a dye-sensitized solar cell, Journal of Physics: Conference Series, 2014, Vol. 541, pp. 12060-12065.

Comments are closed.