Article

Article title UNLOADING TRANSISTORS OF THE INVERTER IN THE SYSTEM CONTACTLESS TRANSMISSION ON AUTONOMOUS UNDERWATER VEHICLE
Authors V.A. Gerasimov, M.V. Kraskovskiy, G.E. Kuvshinov
Section SECTION IV. HYDROACOUSTICS AND UNDERWATER ROBOTICS
Month, Year 04, 2016 @en
Index UDC 621.31
DOI
Abstract Is picked the structure of the non-contact power transmission system on board the autonomous underwater vehicle for charging its batteries. Are shown the advantages of such a system and identified as the object of study autonomous voltage inverter and high frequency transformer with divided primary and secondary parts. Is noted a structural feature of the transformer in the form of a non-magnetic gap between its windings, determined by the thickness of the walls connecting hermetical of envelope parts of the transformer, and leads to a reduced coefficient of magnetic coupling between the windings, as well as increased magnetizing current of the transformer. Is supplied the task of the current discharge transistors autonomous inverter due to partial compensation of inductive component of its output current by including a resonance circuit in diagram. Is spent the analysis of settlement schemes transformer replacement and justified the use of options for a magnetic decoupling of magnetically circuits. Are installed the functional linkages between the selected parameters research facility and on a specific example obtained numerical values currents of the autonomous inverter and transformer for idling and short circuit. The reliability of the conclusions of the theoretical analysis and the results of analytical calculation confirmed the technical circuit simulation. Are picked the requirements for the setting and proposed compromise approach to the choice of the numerical values of the reactor inductance and condenser capacitance compensating the resonant circuit, suitable for idling and for a short circuit at the output of high-frequency transformer. Results from analysis of the research object with included in its composition resonant circuit indicate current discharging transistor autonomous inverter by reducing its output current is approximately three times, for idle mode, and for short-circuit while maintaining the values electrical power transmitted through the transformer.

Download PDF

Keywords Non-contact transmission of electrical energy; autonomous underwater vehicle; transformer with low coupling factor; standalone inverter; compensating the resonant circuit; unloading power switches; relief heat treatment.
References 1. Illarionov G.Yu., Sidenko K.S., Bocharov L.Yu. Ugroza iz glubiny: XXI vek [Dear reader: twenty-first century]. Khabarovsk: KGUP «Khabarovskaya kraevaya tipografiya», 2011, 304 p.
2. Dunbabin M., Corke P., Vasilescu I., Rus D. Data Multing over Underwater Wireless Sensor Networks using an Autonomous Undewater Vehicle. [Conference, 2006]. Available at: http://eprints.qut.edu.au/32678/2/1642013%5B1%5D.pdf (accessed 12 April 2016).
3. James C Kinsey, Ryan M. Eustice, Louis L. Whitcomb. A Survey of Undewater Vehicle Navigation: Recent Advances and New Challenges. [2006]. Available at:
http://www.researchgate.net/publication/237725027 (accessed 12 April 2016).
4. Gerasimov V.A., Filozhenko A.Yu., Chepurin P.I. Struktura sistemy elektrosnabzheniya avtonomnogo neobitaemogo podvodnogo apparata [Structure of the system noncontact energy issue of the autonomous undersea device], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya
SFedU. Engineering Sciences], 2013, No. 3 (140), pp. 47-55.
5. Gerasimov V.A., Kuvshinov G.E., Flozhenko A.Yu., Chepurin P.I. Issledovanie rezhimov raboty sistemy energoobespecheniya avtonomnogo neobitaemogo podvodnogo apparata s beskontaktnoy peredachey elektroenergii [Research of operation modes of the power supply
system of Autonomous underwater vehicle with contactless electric power transmission], Podvodnye issledovaniya i robototekhnika [Underwater Researches and Robotics], 2013, No. 2, pp. 24-32.
6. Albert M. Bradley, Michael D. Feezor, Hanumant Singh, F. Yates Sorrell. Power Systems for Autonomous Underwater Vehicle. [Oceanic Engineering, 2001]. Available at:
http://www.researchgate.net/publication/3231230 (accessed 12 April 2016).
7. Gerasimov V.A., Kopylov V.V., Kuvshinov G.E., Naumov L.A., Sebto Yu.G., Filozhenko A.Yu., Chepurin P.I. Matematicheskaya model' ustroystva dlya beskontaktnoy peredachi elektroenergii na podvodnyy ob"ekt [A mathematical model of the device for contactless power transmission for underwater object], Podvodnye issledovaniya i robototekhnika [Underwater Researches and Robotics], 2012, No. 2, pp. 28-33.
8. Mohan N., Undelamd T.M., Robbins W.P. Power electronics. Converters, Applications, and Design. USA, Hoboken: John Willey & Sons Ltd, 2003, 802 p.
9. Meleshin V.I. Tranzistornaya preobrazovatel'naya tekhnika [Transistor conversion equipment]. Moscow: Tekhnosfera, 2006, 632 p.
10. Yan Lu, K.W. Eric Cheng, S.L. Ho. Quasi current mode control for the phase-shifted series resonant converter. [Transactions on Power Electronics, 2009]. Available at:
http://ira.lib.polyu.edu.hk/bitstream/10397/871/1/phase-shifted-series_08.pdf (accessed 25 February 2016).
11. Artur J. Moradewicz, Marian P. Kazmierkowski. FPGA based control of series resonant converter for contactless power supply [Conference 2008]. Available at: https://www.researchgate.net/ publication/224350054 (accessed 25 February 2016).
12. Stanimir Valtchev, Beatriz Borges, Kostadin Brandskiy, Ben Klaasens. Resonant contactless energy transfer with improved efficiency. [Transactions on Power Electronics, 2009]. Available at: https://www.researchgate.net/publication/224400488 (accessed 25 February 2016).
13. Gorskiy O.V. Issledovanie bazovoy modeli induktivno svyazannykh konturov beskontaktnogo zaryadnogo ustroystva implantiruemykh system [Study the basic model of inductively coupled circuits of the contactless charger of implantable systems]. [Informatsionno-upravlyayushchie sistemy, 2013]. Available at: http://cyberleninka.ru/article/n/issledovanie-bazovoy-modeli-
induktivno-svyazannyh-konturov-beskontaktnogo-zaryadnogo-ustroystva-implantiruemyh-sistem (accessed 25 February 2016).
14. Stanimir Valtchev. Resonant power converters in contactless energy transfer: electric vehicle and renewable energy processing. [Conference, 2015]. Available at: http://elar.urfu.ru/bitstream/10995/35311/1/epp-2015-46.pdf (accessed 25 February 2016).
15. Yaosuo Xue, Liuchen Chang, Sшren Bжkhшj Kjжr, Toshihisa Shimizu. Topologies of SinglePhase Inverters for Small Distributed Power Generators: An Overview. [Transactions on Power Electronics, 2004]. Available at: http://www.researchgate.net/publication/3280590 (accessed 12 April 2016).
16. Ying-Chun Chuang, Yu-Lung Ke, Hung-Shiang Chung, Hung-Kun Chen. Implementation and analysis of an improved series-loaded resonant DC-DC converter operating above resonance for battery charges [Conference, 2008]. Available at: https://www.researchgate.net/publication/4366130 (accessed 25 February 2016).
17. Kuvshinov G.E., Naumov L.A., Sebto Yu.G., Gerasimov V.A., Filozhenko A.Yu., Chepurin P.I., Kraskovskiy M.V. Avtonomnyy invertor napryazheniya dlya pitaniya nagruzki cherez transformator s nizkim koeffitsientom svyazi mezhdu ego obmotkami [Stand-alone inverter voltage to power the load through a transformer with a low coupling coefficient between windings]. Patent RU 2558681, H20M7/797. 2015, bul. No. 22.
18. Gerasimova G.N., Kuvshinov G.E.. Naumov L.A., Usol'tsev V.K. Topologicheskie metody analiza v elektrotekhnike i avtomatike: uchebnoe posobie dlya vuzov [Topological methods of analysis in electrical engineering and automation: textbook for universities]. Vladivostok: Dal'nauka, 2001, 232 p.
19. Elektrotekhnika [Electrical engineering]. In 3 book. Book 1. Teoriya elektricheskikh i magnitnykh tsepey. Elektricheskie izmereniya [The theory of electric and magnetic circuits. Electric-cal measurement], ed. by P.A. Butyrina, R.Kh. Gafiyatullina, A.L. Shestakova. Chelyabinsk: Izd-vo YuUrGU, 2003, 505 p.
20. Amelina M.A., Amelin S.A. Programma skhemotekhnicheskogo modelirovaniya Micro-Cap 8 [The circuit simulation program Micro-Cap 8]. Moscow: Goryachaya liniya – Telekom, 2007, 464 p.

Comments are closed.