Article

Article title RESEARCH AND DEVELOPMENT OF METHODS FOR SOLVING A LOCATION OF INTERMEDIATE DISTRIBUTION CENTERS RESOURCES
Authors O.V. Kosenko
Section SECTION I. AUTOMATION AND CONTROL
Month, Year 05, 2016 @en
Index UDC 519.863
DOI
Abstract In the article the problem of optimal placement of the intermediate centres, taking into account nondeterminism of task parameters. To solve the problem by placing an intermediate centre with the uncertainty of demand required a method that would take into account the ability to host multiple transitional centres, with the possibility of adjusting the coordinates of their location depending on demand consumption. A method is proposed, based on modification of the mining method to determine the best number of distribution centers resources, taking into account not only the distances between objects clustering, but also to meet consumer demand in the areas of consumption, and the method of gravity center, used to adjust the coordinates of the location of the center in the appropriate area grouping. The essential difference of the proposed method is to determine the parameters of the problem in the form of fuzzy intervals. Uncertain exactly the values of the demand raised in the form of intervals on which the parameters correspond to the values determined with a sufficient degree of reliability on statistical data if they are sufficient to determine the parameters or on the basis of experience and intuitive assumptions of experts. The principal advantage of fuzzy set theory, which determines the feasibility of its practical application to the analysis of systems operating under uncertainty conditions, based on adequate representation of the variables using these sets. The result of solving the problem of placing intermediate certificate will represent a set of fuzzy intervals the location coordinates of centers depending on the fuzzy demand of each subarea. The location of the intermediate center will not make specific numeric values and fuzzy intervals, determining the best possible location of the interim centre, which provides not only distances between objects, but the demand specified as fuzzy intervals. The determination of the values of location coordinates in the form of fuzzy interval allows you to define the scope for variation in the data area of the best solutions.

Download PDF

Keywords Intermediate centers; resource allocation; grouping; non-deterministic value; fuzzy intervals, demand; consumption; the coordinates; the potential of the cluster; efficient
References 1. Rushton A., Croucher Ph., Baker P. The Handbook of Logistics and Distribution Management: Understanding the Supply Chain. 5th ed. Kogan Page, 2014, 720 p.
2. Gudehus T., Kotzab H. Comprehensive Logistics Springer, 2012, 933 p.
3. Lukinskiy V.S., Tsvirin'ko I.A., Malevich Yu.V. Modeli i metody teorii logistiki [Models and methods of logistics theory]. St. Petersburg: PITER, 2003, 175 p.
4. Bogdanov S.I., Petrov A.V. Effektivnye protsessy raspredeleniya tovarov: kontseptsii, modeli, metody realizatsii [Efficient processes for the distribution of goods: concepts, models, methods of realization]. Ekaterinburg: Izd-vo UrGEU, 2008, 162 p.
5. Berdyshev S.N., Ulybina Yu.N. Iskusstvo upravleniya skladom [The art of warehouse management]. Moscow: Ay Pi Er Media, 2011, 304 p.
6. Wiesmeth H. Environmental Economics: Theory and Policy in Equilibrium Springer, 2012, 328 p.
7. Chapman Randall G. LINKS Supply Chain Management Simulation Randall G. Chapman, 2015, 131 p.
8. Alesinskaya T.V. Osnovy logistiki. Obshchie voprosy logisticheskogo upravleniya [Fundamentals of logistics. General questions of logistics management]. Taganrog: Izd-vo TRTU, 2005, 121 p.
9. Ivanov D.A. Upravlenie tsepyami postavok [Supply chain Management]. St. Petersburg: Izd-vo Politekhn. un-ta, 2009, 660 p.
10. Presnukhin L.N., Vorob'ev N.V., Shishkevich A.A. Raschet elementov tsifrovykh ustroystv [Calculation of the elements of digital devices]: translated from the German. Moscow: DMK Press, 2008, 832 p.
11. Everitt B.S., Landau S., Leese M., Stahl D. Cluster Analysis. 5th Ed. Wiley, 2011, 346 p.
12. Kuznetsov D.Yu., Troshina T.L. Klasternyy analiz i ego primenenie [Cluster analysis and its application], Yaroslavskiy pedagogicheskiy vestnik [Yaroslavl Pedagogical Bulletin], 2006, Is-sue 4, pp. 103-107.
13. Höppner F., Klawonn F., Kruse R., Runkler T. Fuzzy Cluster Analysis. West Sussex, Eng-land.: John Wiley & Sons, LTD, 2014, 288 p.
14. Wardlow D. L., Wood Donald F., Johnson James, Murphy P. Modern logistic: Trudged., Publ. house "Williams", 2002, 624 p.
15. Konstantinov R.V. Proektirovanie optimal'noy skladskoy seti [Designing the optimal], Inzhenernyy vestnik Dona [Engineering journal of Don], 2011, No. 4, pp. 243-250.
16. Ritter G. Robust Cluster Analysis and Variable Selection. N.-Y.: Chapman and Hall/CRC, 2014, 392 p.
17. Berikov V.S., Lbov G.S. Sovremennye tendentsii v klasternom analize [Modern trends in clus-ter analysis], Vserossiyskiy konkursnyy otbor obzorno-analiticheskikh statey po prioritetnomu napravleniyu «Informatsionno-telekommunikatsionnye sistemy», 2008 [All-Russian competi-tive selection of survey and analytical articles on priority direction "Information-telecommunication systems", 2008], 26 p.
18. Sevast'yanov P.V. Optimizatsiya deyatel'nosti distrib'yutora v usloviyakh neopredelennosti [Distributor optimization activities in the face of uncertainty], Marketing v Rossii i za rubezhom [Marketing in Russia and Abroad], 2001, No. 1, pp. 72-80.
19. Seraya O.V., Bachkir L.V. Stokhasticheskaya klasterizatsiya v zadachakh bol'shoy razmernosti [Clustering in large-scale problems], Vostochno-evropeyskiy zhurnal peredovykh tekhnologiy [East European journal of advanced technologies], 2008, No. 4/3.
20. Roth V., Lange V., Braun M., Buhmann J. Stability-based validation of clustering solutions, Neural Computation, 2004, No. 16 (6), pp. 1299-1323.
21. Shtovba S.D. Proektirovanie nechetkikh sistem sredstvami MATLAB [Design of fuzzy systems by means of MATLAB]. Moscow: Goryachaya Liniya - Telekom, 2007, 288 p.
22. Seraya O.V. Mnogomernye modeli logistiki v usloviyakh neopredelennosti: monografiya [A Multidimensional model of logistics in conditions of uncertainty]. Kh.: FOP Stetsenko I.I., 2010, 512 p.
23. Dombrovskiy V.V., Chausova E.V. Dinamicheskaya setevaya model' upravleniya zapasami s interval'noy neopredelennost'yu sprosa [Dynamic network model of inventory management with interval uncertainty], Vychislitel'nye tekhnologii [Computational Technologies], 2001, Vol. 6, Part 2, pp. 271-274.
24. Borisova E.A., Finaev V.I. Trekhindeksnye raspredelitel'nye zadachi s nechetkimi parametrami [Three-index distribution problem with fuzzy parameters]. Taganrog: TTI YuFU, 2007, 190 p.

Comments are closed.