Article

Article title METHODS OF PRELIMINARY BIOLOGICAL SENSOR SIGNAL PROCESSING IN ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY SYSTEMS
Authors L.K. Samoilov, E.A. Zhebrun
Section SECTION III. SENSORS AND ELECTRONICS
Month, Year 05, 2016 @en
Index UDC 621.317
DOI
Abstract The hardware of electrochemical impedance spectroscopy (EIS) microelectronic systems is considered on the basis of biological sensors (DB). In such systems final conclusions are made on the basis of the analysis of the characteristics of BS, which are presented in the form of electrical parameters of the RC – two-poles. For final conclusions and creating a user-friendly interface at the heart of such systems there are a platform with biological cells (BC) and a personal computer (PC) with a standard bus interface. The exchange of information between the platform and the computer is done via standard input-output modules. BC consists of a biological sensor (BS) and a preliminary data processing module (PDPM). The article provides an overview of possible options for constructing PDPM when low-frequency and bandpass signal representation of the BS. Possible solutions of this problem: direct input analog BS signal; input of a digital BS signal into the PC; input of analog quadrature signal representation into the PC; input of digital quadrature signal representation into the PC; input of amplitude and phase of the signal into the PC. The article shows that the highest operating frequency of the BS can be obtained using PDPM with output analog quadrature components of the BS signal. The article draws attention to a double integration ADC using with the creation of efficient PDPM. It is shown that the transmission of BS signal information in the form of amplitude and phase allows using operating frequencies that are close to the limit at low power dissipation.

Download PDF

Keywords Data processing module; biological sensor; impedance spectroscopy; quadrature signal representation
References 1. Park Dzh., Makkey S. Sbor dannykh v sistemakh kontrolya i upravleniya. Prakticheskoe rukovodstvo [Data collection systems monitoring and control. A practical guide]. Moscow: OOO «Gruppa IDT», 2006, 504 p.
2. Denisenko V.V. Komp'yuternoe upravlenie tekhnologicheskim protsessom, eksperimentom, oborudovaniem [Computer control of process, experiment, equipment]. Moscow: Goryachaya liniya – Telekom, 2009, 608 p.
3. Li L-D, Zhao H-T, Chen Z-B, Mu X-J, Guo L. Aptamer biosensor for label-free impedance spectroscopy detection of thrombin based on gold nanoparticles, Sensors and Actuators: B Chemical, 2011, Vol. 157, pp. 189-194.
4. Ensafi A.A., Amini M., Rezaei B., Talebi M. A novel diagnostic biosensor for distinguishing immunoglobulin mutated and unmutated types of chronic lymphocytic leukemia, Biosensors and Bioelectronics, 2016, No. 7, pp. 409-415.
5. Maks Zh. Metody i tekhnika obrabotki signalov pri fizicheskikh izmereniyakh [Methods and technology of signal processing at physical measurements]: In 2nd vol. Vol. 1. Moscow: Mir, 1983, 312 p.
6. Samoylov L.K. Vvod – vyvod analogovykh signalov v sistemakh upravleniya i kontrolya [Input – output analog signals in the systems of management and control]. Taganrog: Izd-vo YuFU, 2015, 264 p. ISBN 978–5–9275–1692–6.
7. Ivanov M.T., Sergienko A.B., Ushakov V.N. Teoreticheskie osnovy radiotekhniki: ucheb. posobie [Theoretical fundamentals of radio engineering: textbook], ed. by V.N. Ushakova. 2nd ed. Mos-cow: Vyssh. shk., 2008.
8. Nikolaev S.V. O poluchenii kvadraturnykh sostavlyayushchikh s pomoshch'yu diskretizatsii vtorogo poryadka [About obtaining quadrature components with a sample rate of the second order], V kn.: «Sistemy sbora i obrabotki izmeritel'noy informatsii» [In the book "the System of collecting and processing the measurement information"]. Taganrog, 1982, Issue 4, pp. 21-27.
9. Kombinirovannye ustroystva vvoda-vyvoda [Combination devices input/output.]. Available at: http://www.r-technology.ru (accessed 27 Jun 16).
10. Ustroystvo tsifrovogo vvoda/vyvoda na 48 razryadov [Device digital I/o on 48 bits]. Available at: http://www.rudshel.ru (accessed 27 Jun 16).
11. CompactDAQ system. Available at: ni.com/manuals (accessed 27 Jun 16).
12. Ornatskiy P.P. Avtomaticheskie izmereniya i pribory: ucheb. dlya vuzov [Automatic measurement and devices: textbook for universities]. 4th ed. Kiev: Visha shkola, 1980, 560 p.
13. Zhebrun E.A. ATsP impul'sno-potentsial'nogo tipa v KMOP-bazise dlya smeshannykh SnK [ADC pulse-type potential in the mos baseline for mixed SOC], Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem – 2012: Sbornik trudov [Problems of development of perspective micro- and nanoelectronic systems – 2012: Collection of articles], ed. by A.L. Stempkovskogo. Moscow: IPPM RAN, 2012, pp. 356-361.
14. Tittse U., Shenk K. Poluprovodnikovaya skhemotekhnika [Semiconductor circuitry]. Moscow: DMK Press, 2008.
15. Golub V. Kvadraturnye modulyatory i demodulyatory v sistemakh radiosvyazi [Quadrature modulators and demodulators in the radio communication systems], Elektronika: Nauka, Tekhnologiya, Biznes [Electronics: Science, Technology, Business], 2003, No. 3.
16. Prada J., Vega-Castillo P., Krautschneider W. Design of a Wide Tuning-Range CMOS 130-nm Quadrature VCO for Cell Impedance Spectroscopy, 6th IEEE Germany Student Conference Proceedings, Hamburg, 2015, pp. 7-12.
17. Jun – Chau Chien, Mekhail Anwar, Ern – Chia Yen, Luke P. Lee, Ali M. Niknejad. A 1-50 GHz Dielectric Spectroscopy Biosensor with Integrated Receiver Front-end in 65nm CMOS, Proc. IEEE MTT-S Dig., Jun 2013, pp. 1-4.
18. Jafari H., Soleymani L., and Genov R. 16-Channel CMOS Impedance Spectroscopy DNA Analyzer With Dual-Slope Multiplying ADCs, IEEE Transactions on Biomedical Circuits and Systems, Oct. 2012, Vol. 6, No. 5, pp. 468-478.
19. Yang A., Jadhav S.R., Worden R.M., and Mason A.J. Compact low-power impedance-to-digital converter for sensor array Microsystems, IEEE J. Solid-State Circuits, 2009, Vol. 44, No. 10, pp. 2844-2855.
20. Chmykh M.K. Tsifrovaya fazometriya [Digital fotometria]. Moscow: Radio i svyaz', 1993, 184 p.
21. Helmy A.A. and Entesari K. A 1 – to – 8 GHz miniaturized dielectric spectroscopy system for chemical sensing, IEEE MTT-S int. Microw. Symp., Jun. 2012, pp. 493-495.

Comments are closed.