Article

Article title THE METHOD OF INCREASING IN-PHASE NOISE-IMMUNITY OF DIFFERENTIAL DIFFERENCE AND INSTRUMENTATION AMPLIFIERS OF SENSOR SYSTEMS
Authors V.Ya. Yugay, A.V. Bugakova, I.V. Pahomov, A.I. Serebryakov
Section SECTION III. SENSORS AND ELECTRONICS
Month, Year 05, 2016 @en
Index UDC 621.375
DOI
Abstract The article considers new parametric and circuit techniques for increasing common-mode rejection ratio (CMRR) in differential difference (DDOA) and instrumentation amplifiers (IA) of sensor systems. The obligatory introduction of the relatively high-value resistor of local negative feedback into input differential stages (DS) of DDOA makes signifficanlty worse the in-phase rejections in IAs based on it. Therefore, the specific circuit solutions of input DS of DDOAs, which provide increasing the value of CMRR, are necessary. The interrelation between the range of line works of the input stages of DDOA, which must reach values of 1÷3V, and the coefficient CMRR is set. The article shows that in classical DDOA the satisfaction of conditions for cancellation of one of components of CMRR, connected with the resistances of collector junctions of the input transistors and transistors of reference current sources, is possible. If we provide the definite parametric conditions, than CMRR of DDOA will be determined only by the self-feedback gain of the input active elements. The equations are obtained, which show, that the numerical values of CMRR, depending on the Early"s voltages of the input transistors of DS, are also determined by the levels of their static voltage collector-base. To minimize the systematic component CMRR, connected with the self-feedback in transistors, it is necessary to choose equal steady-state behaviors for them. It is especially important in the stages with current mirrors, where there is always the voltage separation collector-base of the input transistors. The article suggests the method of error compensation of DDOA from the in-phase signal. It is implemented in the circuit of IA on the CMOS transistors. The feature of the method is that one of three differential stages of IA, which provides entering the common negative feedback, doesn"t have in-phase component of the input signals. It allows using this stage as a circuit of the inherent compensation of the in-phase errors in DDOA. In the proposed circuit of IA the transfer ratios of the in-phase signal on the output of IA decrease by a factor of 80÷100.

Download PDF

Keywords Sensor systems; in-phase signal; common-mode rejection ratio; operational amplifier; differential difference operational amplifier; analog interface; instrumentation amplifier
References 1. Bruschi P., F. del Cesta, Longhitano A.N., Piotto M., Simmarano R. A very compact CMOS instrumentation amplifier with nearly rail-to-rail input common mode range, European Solid State Circuits Conference (ESSCIRC), ESSCIRC’2014 – 40th., 2014, pp. 323-326. DOI:10.1109/ESSCIRC.2014.6942087.
2. Szynowski J. CMRR analysis of instrumentation amplifiers, Electron. Lett., 1983, Vol. 19, No. 14, pp. 547-549, 1983. DOI: 10.1049/el:19830371.
3. Op't Eynde F., Wambacq P., Sansen W. On the relationship between the CMRR or PSRR and the second harmonic distortion of differential input amplifiers, IEEE Journal Of Solid-State Circuits, 1989, Vol. 24, No. 6, pp. 1740-1744 DOI: 10.1109/4.45014.
4. Biolek D., Senani R., Biolkova V., Kolka Z. Active Elements for Analog Signal Processing: Classification, Review, and New Proposals, Radioengineering, 2008, Vol. 17, No. 4, pp. 15-32.
5. Krutchinskiy S.G., Titov A.E. Optimizatsiya struktur instrumental'nykh usiliteley s
mul'tidifferentsial'nymi operatsionnymi usilitelyami [Optimization of instrumentation amplifiers structures with multidifferential operational amplifiers], Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem – 2014: Sbornik trudov [Problems of development of prospective micro - and nanoelectronic systems – 2014: proceedings], ed. by A.L. Stempkovskogo. Moscow: IPPM RAN, 2014, Part III, pp. 9-14.
6. Averbukh V. Instrumental'nye usiliteli [Instrumentation amplifiers], Skhemotekhnika [Circuitry], 2001, No. 1 (3), pp. 26-29; Skhemotekhnika [Circuitry], 2001, No. 2 (4), pp. 22-24.
7. Titov A.E. Dvukhkanal'nye pretsizionnye instrumental'nye usiliteli dlya radiatsionno-stoykikh sistem na kristalle [Two-channel precision tool amplifiers for radiatsionno-proof system on chip], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2010, No. 1 (102), pp. 64-70.
8. Titov A.E. Dvukhkanal'nyy instrumental'nyy usilitel' s minimal'nym dreyfom nulya [Twochannel instrumentation amplifier with minimal zero drift], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 2 (115), pp. 73-78.
9. Kholenarsipur P. Tri eto mnogo dlya instrumental'nogo usilitelya [Three is a lot for an instrumentation amplifier], Komponenty i tekhnologii [Components and Technologies], 2008, No. 6, pp. 26-30.
10. Krutchinskiy S.G., Titov A.E. Strukturnyy sintez i optimizatsiya instrumental'nykh usiliteley na baze mul'tidifferentsial'nykh OU. Ch. 1. Teoreticheskie osnovy [Structural synthesis and optimization of instrumentation amplifiers on the basis of multidifferential op-amp. Part 1. Theoretical
foundations], Radiotekhnika [Radiotechnics], ed. by Yu.V. Gulyaeva. Moscow: Izd-vo «Radiotekhnika», 2015, No. 2, pp. 98-106.
11. Prokopenko N.N., Dvornikov O.V., Budyakov P.S. Osnovnye svoystva, parametry i bazovye skhemy vklyucheniya mul'tidifferentsial'nykh operatsionnykh usiliteley s vysokoimpedansnym uzlom [The main properties, parameters and basic connection diagram multidifferential operational amplifiers with high impedance node], Elektronnaya tekhnika. Seriya 2. Poluprovodnikovye pribory [Elektronnaya Tekhnika. Series 2. Semiconductor devices], 2014, Issue 2 (233), pp. 53-64.
12. Pallis-Areny R., Webster J.G. Common Mode Rejection Ratio in Differential Amplifiers, IEEE Transactions on Instrumentation and Measurement, 1991, Vol. 40, No. 4.
13. Fan You, Embabi S. H. K., Sanchez-Sinencio E. On the Common Mode Rejection Ratio in Low Voltage Operational Amplifiers with Complementary N–P Input Pairs, IEEE Transactions on Circuits and Systems–II: Analog and Digital Signal Processing, 1997, Vol. 44. No. 8, pp. 678-683.
14. Gupta A.K., Dhanasekaran V., Soundarapandian K., Sanchez-Sinencio E. Multipath commonmode feedback scheme suitable for high-frequency two-stage amplifiers, Electronics Letters, 2006, Vol. 42, No. 9.
15. Dal Fabbro P.A., dos Reis Filho C.A. An integrated CMOS instrumentation amplifier with improved CMRR, 15th Symposium on Integrated Circuits and Systems Design, Proceedings, 2002, pp. 57-61 DOI:10.1109/SBCCI.2002.1137637.
16. Prokopenko N.N., Kryukov S.V. Arkhitektura i skhemotekhnika differentsial'nykh usiliteley s povyshennym oslableniem sinfaznykh signalov: monografiya [The architecture and circuit design the differential amplifier with a high common-mode rejection signals: a monograph]. Shakhty: GOU VPO «YuRGUES», 2008, 329 p.
17. Titov A.E., Dvornikov O.V. Radiatsionno-stoykie instrumental'nye usiliteli na ABMK [Radiation-resistant instrumentation amplifiers on ABMC], Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh skhem – 2012: Sbornik trudov [Problems of development of perspective micro- and nanoelectronic circuits – 2012: Collection of articles], ed. by A.L. Stempkovskogo. Moscow: IPPM RAN, 2012, pp. 284-287.
18. Krutchinskiy S.G., Titov A.E., Radchenko V.A. Radiatsionno-stoykiy instrumental'nyy usilitel' na baze parafaznogo mul'tidifferentsial'nogo OU [Radiation-resistant instrumentation amplifier on the basis of paraphase multidifferential op amp], Nauchno-tekhnicheskie vedomosti SPbGPU
[Nauchno-tekhnicheskie Vedomosti SPbGPU]. Saint-Petersburg: SPbGPU, 2012, No. 2 (145), pp. 151-154.
19. Worapishet A., Demosthenous A., Xiao Liu. A CMOS Instrumentation Amplifier With 90-dB CMRR at 2-MHz Using Capacitive Neutralization: Analysis, Design Considerations, and Implementation, IEEE Transactions On Circuits And Systems–I: Regular Papers, 2011, Vol. 58, No. 4, pp. 699-710.
20. Shruti Jain. To Design High CMRR, High Slew rate Instrumentation Amplifier using OTA and CDTA for Biomedical Application, International Journal of Engineering Research, 2013, Vol. 2, Issue 5, pp. 332-336.
21. Kirsner R. L. G. Capacitative degradation of the common-mode rejection of differential amplifier circuits, Medical & Biological Engineering, 1976, Vol. 14, No. 3, pp. 350.
22. Nicollini G., Guardiani C. A 3.3-V 800-nVrms Noise, Gain-Programmable CMOS Microphone Preamplifier Design Using Yield Modeling Technique, IEEE Journal of Solid-State Circuits, 1993, Vol. 28, No. 8, pp. 915-921.
23. Polonnikov D.E., Slyn'ko V.P., Rostovtsev A.S. Differentsial'nyy usilitel' [Differential amplifier]. Copyright certificate of the USSR No. 537435. 1976. Bull. No. 44.

Comments are closed.