Article

Article title SEMANTIC SEARCH IN SEMANTIC WEB
Authors Yu.A. Kravchenko, A.A. Novikov, V.V. Markov
Section SECTION II. KNOWLEDGE MANAGEMENT
Month, Year 06, 2016 @en
Index UDC 002.53:004.89
DOI
Abstract This article presents the mechanism of semantic search based on a combination of activa-tion methods of dissemination of traditional search engines. Most people are accustomed to express their information needs in terms of keywords. Traditional search engines, the document is usually removed when at least one of the keywords in the query string is inside the concept. In our approach we are expected to obtain copies of all the concepts that are related to your keyword, even if it is not found within the concept. The proposed algorithm can be used for the ontology, in which all relations between the peaks have a description, based on the definitions of ontology, and a weighting factor, which is calculated by mapping the weighting factors. The algorithm has as a starting point an initial set of ontology concepts, which will be called nodes, or nodes. The initial set of concepts is the result of the work of classical search engines. All nodes have a initial value of activation. Spread activation algorithm is used to search for terms in the ontology based on the initial set of concepts with the corresponding initial values of activation. The algorithm runs as long until a certain condition (e.g., a predetermined size of the result set), or no more nodes are processed in a priority queue.

Download PDF

Keywords Semantic search; ontology; Semantic Web; weight mapping; spread activation algorithm
References 1. Kureychik V.M. Osobennosti postroeniya sistem podderzhki prinyatiya resheniy [Features of decision making support system design], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 7 (132), pp. 92-98.
2. Kravchenko Yu.A., Kureichik V.V. Knowledge management based on multi-agent simulation in informational systems, Conference proceedings. 8th IEEE International Conference “Application of Information and Communication Technologies – AICT 2014”. 15-17 October 2014, Astana, Kazakhstan, pp. 264-267.
3. Davies J., Weeks R., and Krohn U. QuizRDF: Search Technology for the Semantic Web, WWW2002 workshop on RDF & Semantic Web Applications, Proc. WWW2002, Hawaii, USA, 2008.
4. Sheth A., Bertram C., Avant D., Hammond B., Kochut K., and Warke Y. Managing Semantic Content for the Web, IEEE Internet Computing, 2012, No. 6 (4), pp. 80-87.
5. Bova V.V. Kontseptual'naya model' predstavleniya znaniy pri postroenii intellektual'nykh informatsionnykh sistem [Conceptual model of knowledge representation in the constructing intelligent information systems], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 7 (156), pp. 109-117.
6. Kureychik V.V., Rodzin S.I. O pravilakh predstavleniya resheniy v evolyutsionnykh algoritmakh [On the rules for the submission decisions in evolutionary algorithm], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2010, No. 7 (108), pp. 13-21.
7. Stojanovic N., Struder R., and Stojanovic L. An Approach for the Ranking of Query Results in the Semantic Web. Proc. of ISWC '03 (Sanibel Island, FL, October 2003), SpringerVerlag, 2013, pp. 500-516.
8. Chen H., and Ng T. An Algorithmic Approach to Concept Exploration in a Large Knowledge Network (Automatic Thesaurus Consultation); Symbolic Branch-and-Bound vs. Connectionist Hopfield Net Activation, Journal of the American Society for Information Science, 2005, No. 46 (5), pp. 348-369.
9. Srikant R., and Agrawal R. Mining generalized association rules, Proceedings of VLDB '95, 2010, pp. 407-419.
10. Peat H., and Willet P. The limitations of term co-occurrence data from query expansion in document retrieval systems, Journal of the American Society for Information Science, 2012, No. 42 (5), pp. 378-383.
11. Bashmakov A.I., Bashmakov I.A. Intellektual'nye informatsionnye tekhnologii: ucheb. Posobie [Intelligent information technologies: a tutorial]. Moscow: MGTU im. N.E. Baumana, 2005, 304 p.
12. Kureichik V.M., Rodzin S.I. Evolutionary algorithms: genetic programming, Journal of Computer and Systems Sciences International, 2002, Vol. 41, No. 1, pp. 123-132.
13. Anchekov M.I., Bova V.V., Novikov A.A. Evolyutsionnyy podkhod k sozdaniyu neyrosetevoy modeli kollektivnogo resheniya intellektual'nykh zadach [An evolutionary approach to create neural network models of collective decision of intellectual tasks], Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN [Izvestija Kabardino-Balkarskogo nauchnogo centra RAN], 2015, No. 5 (67), pp. 24-30.
14. Kuliev E.V., Samoylov A.N., Novikov A.A. Kognitivnaya arkhitektura agentov mul'tiagentnoy sistemy [Cognitive architecture of agents multi-agent systems], Informatizatsiya i svyaz' [Informatization and communication], 2016, No. 2, pp. 116-120.
15. Tuzovskiy A.F., Chirikov S.V., Yampol'skiy V.Z. Sistemy upravleniya znaniyami (metody i tekhnologii) [The knowledge management system (methods and technology)], under ed. V.Z. Yampol'skogo. Tomsk: Izd-vo NTL, 2005, 260 p.
16. Bova V.V., Kravchenko Y.A., Kureichik V.V. Decision Support Systems for Knowledge Man-agement, Software Engineering in Intelligent Systems. Proceedings of the 4th Computer Science On-line Conference 2015 (CSOC2015), Vol. 3. Springer International Publishing AG Switzerland, pp. 123-130.
17. Kravchenko Yu.A. Sintez raznorodnykh znaniy na osnove ontologiy [Synthesis of heterogeneous knowledge based on ontologies], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 11 (136), pp. 141-145.
18. Kravchenko Yu.A., Markov V.V. Ontologicheskiy podkhod formirovaniya informatsionnykh resursov na osnove raznorodnykh istochnikov znaniy [Ontological approach formation of information resources based on knowledge disparate sources], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 7 (144), pp. 116-120.
19. PUC-Rio Informatics Dept. [Electronic resource]. Available at: http://www.inf.puc-rio.br (accessed 13 May 2016).
20. Yuzhnyy Federal'nyy Universitet [Electronic resource]. Available at: http://sfedu.ru (13 May 2016).
21. Kureychik V.M., Kazharov A.A. Ispol'zovanie shablonnykh resheniy v murav'inykh algoritmakh [Template using for ant colony algorithms], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 7 (144), pp. 11-17.

Comments are closed.