Article

Article title SWARMS ALGORITHMS OF SEARCH OPTIMIZATION BASED ON MODELING THE BEHAVIOR OF BATS
Authors E.V. Kuliev, A.A. Lezhebokov, Yu.A. Kravchenko
Section SECTION II. BIOINSPIRED SEARCH
Month, Year 07, 2016 @en
Index UDC
DOI DOI 10.18522/2311-3103-2016-7-5362
Abstract The paper discusses to solve of the key artificial intelligence problem – development of new effective heuristic search mechanisms. As the most perspective directions in search optimization theory is considered principles and rules of species behavior in nature for solving NP-hard optimization problems. The most interesting are methods and algorithms based on multiagent management and swarm intelligent. The paper deals with swarm algorithm based on simulation of bats’ behavior. The model of one specie’s behavior is a simulation of it’s movement within limited space to find a quasi optimal solution. There are represented several approaches to manage the algorithm configurations – frequency and range of echo signals, probabilistic rules for changing the direction of movement. The authors developed a flowchart of algorithm for the VLSI single-sized elements placement problem. An unified approach for solution encoding as a string allow to use the developed algorithm for various initial data and restrictions of the placement problem. Initial area of the search space is formed by sequential, random and iterative algorithms. There is a software on the basis of object oriented language. A set of experimental computations were carried out to confirm the algorithm time complexity and it efficiency. The complexity of the swarm algorithm based on bats’ behavior depends on a number of species linearly and has a quadratic character of dependency on dimensionality of initially problem, i.e. on a number of placed elements which denotes a solutions’ string length.

Download PDF

Keywords Placement; adaptive procedures; evolution simulation; swarm algorithm; genetic algo-rithm; bats; software.
References REFERENCES
1. Norenkov I.P., Arutyunyan N.M. Evolyutsionnye metody v zadachakh vybora proektnykh resheniy [Evolutionary techniques in the problems of design choices], Nauchno-tekhnicheskoe izdanie MGTU im. N.E. Baumana «Nauka i obrazovanie» [Scientific and technical periodical of the Bauman MSTU N. Uh. Bauman "Science and education"], 2007, No. 9.
2. Karpenko A.P. Sovremennye algoritmy poiskovoy optimizatsii. Algoritmy, vdokhnovlennye prirodoy: uchebnoe posobie [Modern algorithms of search engine optimization. Algorithms in-spired by nature: a training manual]. Moscow: Izd-vo MGTU im. N.E. Baumana, 2014, 448 p.
3. Akhmedova Sh.A. Ob effektivnosti «staynogo» algoritma optimizatsii [The effectiveness of the "schooling" of the optimization algorithm], Trudy XLIII Kraevoy nauchnoy studencheskoy kon-ferentsii po matematike i komp'yuternym naukam [Proceedings of XLIII the Regional student scientific conference on mathematics and computer science]. Krasnoyarsk: SFU, 2010, pp. 9-12.
4. Kureychik V.V., Zaporozhets D.Yu. Sovremennye problemy pri razmeshchenii elementov SBIS [Modern placement’s problems of VLSI], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 7 (120), pp. 68-73.
5. Kuliev E.V., Lezhebokov A.A. O gibridnom algoritme razmeshcheniya komponentov SBIS [On the hybrid algorithm of component placement VLSI], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 11 (136), pp. 188-192.
6. Kureychik V.V., Bova V.V., Kureychik V.V. Kombinirovannyy poisk pri proektirovanii [Com-bined search in the design], Obrazovatel'nye resursy i tekhnologii [Educational Resources and Technology], 2014, No. 2 (5), pp. 90-94.
7. Kureychik V.V., Kureychik Vl.Vl. Bionicheskiy poisk pri proektirovanii i upravlenii [Search inspired by natural systems, for the design and management], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 11 (136), pp. 178-183.
8. Zaporozhets D.U., Zaruba D.V., Kureichik V.V. Representation of solutions in genetic VLSI placement algorithms, Proceedings of IEEE East-West Design and Test Symposium, EWDTS 2014.
9. Zaporozhets D.Yu., Zaruba D.V., Kureichik V.V. Hybrid bionic algorithms for solving problems of parametric optimization, World Applied Sciences Journal, 2013, No. 23 (8), pp. 1032-1036.
10. Kuliev E.V., Dukkardt A.N., Kureychik V.V., Legebokov A.A. Neighborhood research approach in swarm intelligence for solving the optimization problems, Proceedings of IEEE East-West Design and Test Symposium, EWDTS 2014.
11. Kureychik V.V., Zaporozhets D.Yu. Roevoy algoritm v zadachakh optimizatsii [Swarm algorithm in optimisation promlems], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2010, No. 7 (108), pp. 28-32.
12. Bova V.V., Lezhebokov A.A., Gladkov L.A. Problem-oriented algorithms of solutions search based on the methods of swarm intelligence, World Applied Sciences Journal, 2013, No. 27 (9),
pp. 1201-1205.
13. Zaruba D., Zaporozhets D., Kureichik V. VLSI placement problem based on ant colony optimization algorithm, Advances in Intelligent Systems and Computing, 2016, No. 464, pp. 127-133.
14. Kureichik V., Kureichik V., Bova V. Placement of VLSI fragments based on a multilayered approach, Advances in Intelligent Systems and Computing, 2016, No. 464, pp. 181-190.
15. Kureichik V.V., Zaruba D.V. The bioinspired algorithm of electronic computing equipment schemes elements placement, Advances in Intelligent Systems and Computing, 2015, No. 347, pp. 51-58.
16. Zaporozhets D., Zaruba D.V., Kureichik V.V. Hierarchical approach for VLSI components placement, Advances in Intelligent Systems and Computing, 2015, No. 347, pp. 79-87.
17. Zaporozhets D.U., Zaruba D.V., Kureichik V.V. Representation of solutions in genetic VLSI placement algorithms, Proceedings of IEEE East-West Design and Test Symposium, EWDTS 2014.
18. Kuliev E.V., Lezhebokov A.A., Dukkardt A.N. Podkhod k issledovaniyu okrestnostey v roevykh algoritmakh dlya resheniya optimizatsionnykh zadach [Approach to research environs in swarms algorithm for solution of optimizing problems], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 7 (156), pp. 15-26.
19. Kuliev E.V.. Zaporozhets D.Yu., Ksalov A.M. Bioinspirirovannyy poisk pri reshenii zadachi razmeshcheniya komponentov SBIS [Bioinspired search when solving the problem of compo-nent placement of VLSI], Izvestiya Kabardino-Balkarskogo nauchnogo tsentra RAN [Izvestiya of Kabardino-Balkar scientific centre of the RAS], 2014, No. 6 (62), pp. 58-65.
20. Kuliev E.V., Lezhebokov A.A. Issledovanie kharakteristik gibridnogo algoritma raz-meshcheniya [Research parameters of hybrid algorithm for placement], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 3 (140), pp. 255-261.

Comments are closed.