Authors Yu.V. Zachinyaev
Month, Year 09, 2016 @en
Index UDC 621.373.9
DOI 10.18522/2311-3103-2016-9-102113
Abstract The research is dedicated to one of the approaches in solving the problem of increasing the frequency deviation of the linear frequency modulation signals (LFM). The aim of the research is to obtain the optimal shape of the input optical pulse for the proper functioning of the self-phase modulation based chirp generator which allows achieving high values of the signal frequency deviation along with the high linearity of frequency dependence. The paper analyzes the structure of the device realizing the formation of signals with linear frequency of modulation based on self-phase modulation effect using the optical fiber element. The influence of the input optical pulse shape of transmitting optical module on the deviation of formed signals frequency and the linearity of frequence dependency has been studied. The relationship between the frequency deviation of the generated signal and frequency linearity for the three options for implementation of the pulse shape has also been estimated. It has been shown that because of the output signal nonlinear dependence of the frequency in case of super gaussian pulses and low frequency deviation values when using a bell-shaped pulses it is appropriate to use gaussian pulse as the input signal providing large frequency deviation at proper level of linearity of frequency dependency. It was revealed that the linearity of the output frequency dependence, estimated by the criterion of minimum nonlinearity coefficient, depends on the width of the Gaussian pulse, and increases with its growth. It has been found that the choice of the optimum Gaussian pulse width is determined according to the area assignment. If the high values of the frequency deviation are required without restrictions on the linearity of the frequency sweep law it seems appropriate to decrease the time constant of a Gaussian pulse. The results of research are related to the development of the theory of radio pro-cessors based on fiber-optic structures and can be used in radars, secure communications, geolo-cation and tomography.

Download PDF

Keywords Linear frequency-modulated signals; effect of self-phase modulation; frequency deviation; pulse shape; optical fiber; optical transmitter module.
References 1. Springer A., Gugler W. Spread Spectrum Communications Using Chirp Signals, EUROCOMM, 2000, pp. 166-170.
2. Dyatlov A.P., Dyatlov P.A. Adaptivnyy avtokorrelyatsionnyy obnaruzhitel' svyaznykh LChM-signalov [Adaptive autocorrelation detector coherent chirp signals], Spetsial'naya tekhnika [Special Technique], 2009, No. 6, pp. 34-43.
3. Ehrenberg J., Torkelson T. FM slide (chirp) signals: a technique for significantly improving the signal-to-noise performance in hydro acoustic assessment systems, Elsevier Fisheries Research, 2000, No. 47, pp. 56-67.
4. Tomizawa Y.A. Novel Subsurface Radar Using a Short Chirp Signal to Expand the Detection Range, IEICE Trans Commun., 2000, No. 10, pp. 2427-2434.
5. Sukhanov D.Ya., Yakubov V.P. Primenenie signalov s lineynoy chastotnoy modulyatsiey v trekhmernoy radiotomografii [The use of signals with linear frequency modulation in a three-dimensional radiotomography], Zhurnal tekhnicheskoy fiziki [Journal of Applied Physics], 2010, Vol. 80, No. 4, pp. 115-119.
6. Gran F., Jensen J. Designing non-linear frequency modulated signals for medical ultrasound imaging, 2006 IEEE Ultrasonics Symposium, 2006, pp. 1714-1717.
7. Gusarov A.A. Sovremennye sistemy radiochastotnoy identifikatsii i registratsii ob"ektov [Modern systems, radio frequency identification and registration of objects], Rynok mikro-elektroniki [Microelectronics Market], 2004, No. 2. Available at: (accessed 05 September 2015).
8. Zachinyaev Yu.V. Analiz i klassifikatsiya formirovateley lineyno-chastotno-modulirovannykh radiosignalov c tochki zreniya umen'sheniya dlitel'nosti formiruemykh signalov [Analysis and classification of generators linear-frequency-modulated radio signals in terms of reducing the duration of the generated signals], Sovremennye problemy nauki i obrazovaniya [Modern prob-lems of science and education], 2012, No. 5. Available at: (accessed 05 September 2015).
9. Zachinyaev Yu.V., Rumyantsev K.E. Radiotekhnicheskie protsessory na volokonno-opticheskikh strukturakh. Formirovateli LChM-signalov: monografiya [Electronic processors for fiber-optic structures. Shapers chirp signals: monograph]. Saarbryukken: Izd-vo LAP Publishing, 2014, 177 p.
10. Kukuyashnyy A.V. Issledovanie i razrabotka dinamicheskikh zapominayushchikh ustroystv na osnove volokonno-opticheskoy elementnoy bazy. Dis. kand. tekhn. nauk [The research and development of dynamic memory devices based on fiber-optic element base. Dr. of eng. sc. diss.]. Taganrog: TRTU, 1999, 160 p.
11. Zachinyaev Yu.V., Rumyantsev K.E., Kukuyashnyy A.V. Formirovanie nanosekundnykh LChM-radiosignalov na volokonno-opticheskikh strukturakh [The formation of the nanosecond chirp radio signals on fiber-optic structures], Elektrotekhnicheskie i informatsionnye sistemy i kompleksy [Electrotechnical and information complexes and systems], 2011, Vol. 7, No. 3, pp. 32-38.
12. Gorbunov A.V., Rumyantsev K.E. Dinamicheskie zapominayushchie ustroystva na osnove binarnykh volokonno-opticheskikh struktur [Dynamic memory devices based on binary fiber-optic structures], Radiotekhnika [Radioengineering], 2002, No. 12, pp. 73.
13. Gorbunov A.V., Rumyantsev K.E. Modelirovanie protsessa formirovaniya kopiy v dinamich-eskom zapominayushchem ustroystve s binarnoy volokonno-opticheskoy strukturoy [Modeling of process of formation of copies in a dynamic storage device with a binary fiber-optic structure], Izvestiya vuzov Rossii. Radioelektronika [Proceedings of the Russian Universities: Radioelectronics], 2006, No. 2, pp. 36-41.
14. Zachinyaev Yu.V., Rumyantsev K.E. Formirovanie radiosignalov s lineynoy chastotnoy mod-ulyatsiey s ispol'zovaniem fazovoy samomodulyatsii [The formation of radio signals with linear frequency modulation with the use of phase self-modulation], Tekhnicheskie i estestvennye nauki: teoriya i praktika: sbornik materialov mezhdunarodnykh nauchnykh e-simpoziumov. Rossiya, g. Moskva, 27-28 marta 2015 g. [Technical and natural Sciences: theory and practice: materials of the international scientific e-symposia. Russia, Moscow, 27-28 March 2015]. Kirov: MTsNIP, 2015, pp. 47-59.
15. Zachinyaev Yuriy, Rumyantsev Konstantin. Self-phase modulation based chirp generator, Pro-ceedings of the 2016 IEEE Radar Conference, 2016. DOI: 10.1109/RADAR.2016.7485278.
16. Zachinyaev Yu.V. Formirovanie radiosignalov s lineynoy chastotnoy modulyatsiey na osnove yavleniya fazovoy samomodulyatsii [Self-phase modulation based chirp generation], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 8 (169), pp. 77-85.
17. Zachinyaev Yu.V., Plivak S.A., Shumilin A.S. Formirovanie signalov s lineynoy chastotnoy modulyatsiey na osnove yavleniya fazovoy samomodulyatsii [Formation of signals with linear frequency modulation based on the phenomenon of phase self-modulation], Sbornik trudov V Mezhdunarodnoy konferentsii po fotonike i informatsionnoy optike [proceedings of the V In-ternational conference on Photonics and information optics], 2016, pp. 345-346.
18. Agraval G.P. Nelineynaya volokonnaya optika [Nonlinear fiber optics]: translation from Eng-lish. Moscow: Mir, 1996, 323 p.
19. Kochemasov V.N., Belov L.A., Okoneshnikov V.S. Formirovanie signalov s lineynoy chastotnoy modulyatsiey [Formation of signals with linear frequency modulation]. Moscow: Radio i svyaz', 1983, 192 p.
20. Ivanov A.B. Volokonnaya optika: komponenty, sistemy peredachi, izmereniya [Fiber optics: components, transmission systems, measurement]. Moscow: Izd-vo «Syrus System», 1999, 673 p.

Comments are closed.