Article

Article title NUMERICAL MODELING OF THERMOMECHANICAL STRESSES GENERATED IN A THIN TRIBOLUMINESCENT FILMS UNDER LASER-PULSE ACTION
Authors E.A. Ryndin, A.S. Isaeva
Section SECTION I. ELECTRONICS AND NANOTECHNOLOGY
Month, Year 10, 2016 @en
Index UDC 621.373.826
DOI 10.18522/2311-3103-2016-10-411
Abstract Triboluminescent films attract the attention of scientists and engineers as perspective mate-rials not only for development of ophysical quantities sensors for robotic technical complexes, but also for creation of a new generation nondestructive testing systems. Triboluminescence is a visible or infrared light generated under the action of mechanical forces. Those mechanical forces may occur because of static, dynamic, or pulsing fields of pressure or deformation. For example, in the formation of surface cracks, the region of greatest stress are located in the vertices as they are stress concentrators, which contribute to further development of the crack. The values of the mechanical stresses in these stress concentrators may greatly exceed the stresses values, which affect the design as a whole. Mathematical models that associate the triboluminescent emitting flow with the mechanical forces, which produce that flow in materials, are widely used in tribolu-minescence studies. During the experimental studies of triboluminescence, the mechanical forces in triboluminescent materials are usually generated by short laser-pulse action. Therefore, it is necessary to set a correspondence between the value of mechanical forces in triboluminescent material and parameters of laser-pulse. In most cases, it is difficult to set this correspondence by experiment. In this paper proposed is the mathematical model that allows calculating the thermomechanical stresses generated in a thin triboluminescent film under laser-pulse action, estimating the duration transients, and determining the profile and parameters of laser beam. This model could be used for calculating the values necessary for obtaining requirement to mechanical forces and temperatures in triboluminescent films. The model consists of heat and nonstationary thermoelasticity equations, which are numerically solved by finite difference method.

Download PDF

Keywords Triboluminescence; mathematical model; thermoelasticity equation; heat equation, mechanical stresses.
References 1. Gurvich A.M. Vvedenie v fizicheskuyu khimiyu kristallofosforov: ucheb. posobie dlya vtuzov [Introduction to the physical chemistry of crystal phosphors: a training manual for VTU-call]. Moscow: Vyssh. shkola, 1971, 336 p.
2. Skarmozzino P. O mekhanizme izlucheniya sveta v tribo-lyuminestsentnykh materialakh [On the mechanism of radiation of light in a tribo-luminescent materials], Lettere al Nuovo Cimento, 1970, pp. 825-827.
3. Tatmyshevskiy K.V. Mekhanolyuminestsentnyy chuvstvitel'nyy element: matematicheskaya model' i osnovnye kharakteristiki [Mechanoluminescent sensing element: mathematical model and basic characteristics], Datchiki i sistemy [Sensors and systems], 2005, No. 1, pp. 10-15.
4. Makarova N.Yu. Tatmyshevskiy K.V. Protsess preobrazovaniya v mekhanolyuminestsentnom sensore davleniya [The conversion process in mechanoluminescent sensor pressure], Inzhenernaya fizika [Engineering physics], 2006, No. 1, pp. 1-6.
5. Tatmyshevskiy K.V. Mekhanolyuminestsentnye (svetogeneratsionnye) sensornye elementy dlya sovremennykh informatsionno-izmeritel'nykh tekhnologiy [Mechanoluminescent (svetoprozrachnye) touch elements for a modern information-measuring technologies], Mikrosistemnaya tekhnika [Microsystem technology], 2004, No. 12, pp. 4-10.
6. Banishev A.F., Bol'shukhin V.A., Azarov A.D. Mekhanolyuminestsentsiya melkodispersnogo poroshkoobraznogo tverdogo rastvora SrAl2O4:(Eu2+,Dy3+), vozbuzhdaemaya vozdeystviem lazernykh impul'sov [Mechanoluminescence fine powdery solid solution SrAl2O4:(Eu2+,Dy3+), excited by laser pulses], Fizika i khimiya obrabotki materialov [Physics and chemistry of materials processing], 2008, No. 3, pp. 24-27.
7. Li C., Xu C.N., Zhang L., Yamada H., Imai Y. Dynamic visualization of stress distribution on metal by mechanoluminescence images, J. Visualization, 2008, Vol. 11, No. 4, pp. 329-335.
8. Sage I., Bourhill G. Triboluminescent materials for structural damage monitoring, J. Mater. Chem., 2001, No. 11, pp. 231 -245.
9. Tatmyshevskiy K.V. Klassifikatsiya i osobennosti primeneniya mekhano-lyuminestsentnykh datchikov davleniya [Classification and application features of mechano-luminescence pressure sensors], Datchiki i sistemy [Sensors and systems], 2004, No. 12, pp. 30-33.
10. Abramova K.B., Shcherbakova I.P., Rusakov A.I., Semenov A.A. Emissionnye protsessy, soprovozhdayushchie deformirovanie i razrushenie metallov [Emission processes accom-panying deformation and fracture of metals], Fizika tverdogo tela [Physics of the solid state], 1999, Vol. 41, Issue 5. – S. 841-843.
11. Tcherniega N.V., Zemskov K.I., Savranskii V.V., Kudryavtseva A.D., X-ray generation induced by visible lasers in ZnS aqueous suspensions, Journal of Russian Laser Research, 2011,
Vol. 32, No. 3, pp. 247-252.
12. Morozova N.K., Karetnikov I.A., Blinov V.V., Gavrishchuk E.M. Issledovanie tsentrov lyuminestsentsii, obyazannykh prisutstviyu medi i tsinka v ZnSe [The study of luminescence centers, which are obliged to the presence of copper and zinc in ZnSe], Fizika i tekhnika poluprovodnikov [Physics and technics of semiconductors], 2001, Vol. 35, No. 1, pp. 25-33.
13. Abramova K.B., Shcherbakov I.P. Lyuminestsentsiya, vozbuzhdaemaya v metallakh pri mekhanicheskikh nagruzheniyakh [Luminescence excited in metals during mechanical loading], ZhTF [Journal of Applied Physics], 1994, Vol. 64, No. 9, pp. 75-88.
14. Yakovlev E.B., Shandybina G.D. Vzaimodeystvie lazernogo izlucheniya s veshchestvom (silovaya optika) [Interaction of laser radiation with matter (power optics)], Konspekt lektsiy. Chast' II. Lazernyy nagrev i razrushenie materialov [Lecture notes. Part II. Laser heating and fracture of materials], ed. by V.P. Veyko. St. Petersburg: SPb GU ITMO, 2011, 184 p.
15. Kovalenko A.D. Osnovy termouprugosti [Fundamentals of thermoelasticity]. Kiev: Naukova dumka, 1970, 304 p.
16. Knyazeva A.G. Elementy teorii uprugosti, termouprugosti i massouprugosti i ikh prilozhenie k opisaniyu protsessov termoobrabotki: uchebnoe posobie [Elements of the theory of elasticity, thermoelasticity and mesoporosity and their application to the description of heat treatment processes: a tutorial]. Tomsk: Izd-vo Tomskogo politekhnicheskogo universiteta, 2011, 72 p.
17. Ryndin E.A., Ryzhuk R.V., Isaeva A.S. Matematicheskaya model' mekhanicheskikh napryazheniy, initsiirovannykh lazernym impul'som [Mathematical model of mechanical stresses initiated by a laser pulse], Fundamental'nye issledovaniya [Fundamental research], 2012, No. 11, pp. 609-614.
18. Ryndin E.A., Isaeva A.S. Programma chislennogo modelirovaniya mekhanicheskikh napryazheniy v materiale, initsiirovannykh lazernym impul'som [Program of numerical simu-lation of mechanical stresses in the material initiated by the laser pulse] Svidetel'stvo RF o gosudarstvennoy registratsii programmy dlya EVM №2013610833. 2013 [Certificate RF on state registration of program for computer No. 2013610833. 2013].
19. Ketkov Yu.L., Ketkov A.Yu., Shul'ts M.M. MATLAB 6.x.: programmirovanie chislennykh metodov [MATLAB 6.x.: programming of numerical methods]. St. Petersburg: BKhV - Peterburg, 2004, 672 p.
20. Frantsevich I.N., Voronov F.F., Bakuta S.A. Uprugie postoyannye i moduli uprugosti metallov i nemetallov. Spravochnik [Elastic constants and elasticity moduli of metals and nonmetals. Reference. Kiev: Naukova dumka, 1982, 286 p.

Comments are closed.