Article

Article title NANOLITHOGRAPHY OF ELEMENTS OF NANOELECTRONICS BASED ON TITANIUM OXIDE
Authors V.A. Smirnov
Section SECTION I. ELECTRONICS AND NANOTECHNOLOGY
Month, Year 10, 2016 @en
Index UDC 621.38-022.532
DOI 10.18522/2311-3103-2016-10-2740
Abstract The paper presents the results of a study of oxide nanostructures (ONS) formation modes on the surface of a thin film of titanium during the local anodic oxidation. Presented are the results of the formation of a resistive memory cell layouts based on memristor structures and elements of nanoelectronics based on nanoscale conductance channels by local anodic oxidation on the surface of a thin film of titanium. The influence of basic governing LAO process parameters on the geometric dimensions of the oxide nanostructures formed on the surface of a thin film of titanium is studied. The effect of the voltage amplitude and the pulse duration at the LAO and the relative humidity at the height and diameter of the titanium ONS is studied. It is shown that by increasing the relative humidity of 50±1% to 90±1% occurred a decrease in amplitude voltage ONS forming process by LAO from 6 to 5.5V, and an increase in the height of titanium ONS from 1.3±0.2 to 3.5±0,8 nm and a diameter from 35.4±1.8 to 42.5±2.9 nm, respectively. By increasing the voltage pulse width from 10 to 1000 ms the height of the ONS increases from 1.38±0.19 to 3.78±0.45 nm. It is shown that the titanium oxide nanostructures formed by LAO have memristor effect uniform structure within the resistive memory cell layout. By applying a negative voltage of 5V, the structure switches to "high" resistance state to 1,4±0,4×109 Ω, while the positive voltage is applied, the structure 5V is switched to the "low" resistance 2,3±1,1×108 Ω. The results of the formation of nanoscale conductance channel width of less than 100 nm in a thin film of titanium by LAO for the manufacture of elements of nanoelectronics layouts of varying complexity are given. For logical element nanoscale the conductance channels of about 20 nm in width were obtained. The results can be used in the development of technological processes of manufacturing the resistive memory elements and elements of nanoelectronics by using probe nanotechnology.

Download PDF

Keywords Nanotechnology; nanomaterials; local anodic oxidation; atomic force microscopy; thin ti-tanium film; oxide nanostructures; nanolithography; memristor; RRAM.
References 1. Chaplygin Yu.A. Nanotekhnologii v elektronike [Nanotechnology in electronics]. Moscow: Tekhnosfera, 2005, 448 p.
2. Nevolin V.K. Zondovye nanotekhnologii v elektronike [Probe nanotechnology in electronics]. Moscow: Tekhnosfera, 2006, 160 p.
3. Heinzel T. Mesoscopic Electronics in Solid State Nanostructures. WILEY-VCH Verlag GmbH & Co, 2007, 416 p.
4. Curson N. J., Nemutudi R. and Jones G.A.C. Ballistic transport in a GaAs/AlxGa1-xAs one-dimensional channel fabricated using an atomic force microscope, Applied Phyics Letters, 2001, No. 78, pp. 34-66.
5. Meena J.S., Sze S.M., Chand U., Tseng T.-Y. Overview of emerging nonvolatile memory tech-nologies, Nanoscale Research Letters, 2014, Vol. 9 (1), pp. 1-33.
6. Ting-Chang Chang, Kuan-Chang Chang, Tsung-Ming Tsai, Tian-Jian Chu and Simon M. Sze Resistance random access memory, Materials Today, 2016, Vol. 19, No. 5, pp. 254-264.
7. Cong Ye, JiajiWu, Gang He, Jieqiong Zhang, Tengfei Deng, Pin He, HaoWang. Physical Mechanism and Performance Factors of Metal Oxide Based Resistive Switching Memory:
A Review, Journal of Materials Science & Technology, 2016, Vol. 32, pp. 1-11.
8. Raoux S. et al. Phase-change random access memory: A scalable technology, IBM Journal of Research And Development, 2008, Vol. 52, No. 4/5, pp. 465-479.
9. Cheng H.Y. Atomic-level engineering of phase change material for novel fast-switching and high-endurance PCM for storage class memory application, IEEE International Electron Devices Meeting, 2013, pp. 758-761.
10. Akinaga H., Shima H. Resistive Random Access Memory (ReRAM) Based on Metal Oxides, Proc. IEEE, 2010, Vol. 98, No. 12, pp. 2237-2251.
11. Sekar D.C. et al. Technology and circuit optimization of resistive RAM for low-power, repro-ducible operation, IEEE International Electron Devices Meeting, 2014, pp. 657-660.
12. Chua L. Nonlinear Circuit Foundations for Nanodevices, Part I: The Four-Element Torus, Proc. IEEE, 2003, Vol. 91, pp. 1830-1859.
13. Sieu D. Ha and Shriram Ramanathan. Adaptive oxide electronics: A review, Journal of applied physics, 2011, Vol. 110, pp. 071-101.
14. Jang-Sik Lee. Progress in non-volatile memory devices based on nanostructured materials and nanofabrication, J. Mater. Chem., 2011, No. 21, pp. 14097.
15. Strukov D, Snider G, Stewart D. The missing memristor found, Nature, 2008, Vol. 453, pp. 80-83.
16. Baatar Chagaan, Porod Wolfgang, Roska Tamas. Cellular Nanoscale Sensory Wave Compu-ting. US: Springer, 2010, 589 р.
17. Kügeler C, Rosezin R, Linn E. Materials, technologies, and circuit concepts for nanocrossbar-based bipolar RRAM, Appl. Phys. A, 2011, Vol. 102, pp. 791-809.
18. Do Y., Kwak J., Bae Y. Hysteretic bipolar resistive switching characteristics in TiO2/TiO2-x multilayer homojunctions, Appl. Phys. Lett., 2009, No. 95, pp. 3.
19. Szot K., Rogala M., Speier W., Klusek Z. TiO2 – a prototypical memristive material, Nanotech-nology, 2011, No. 22, pp. 21.
20. Smirnov V.A., Ageev O.A. Nanolitografiya metodom lokal'nogo anodnogo okisleniya poluprovodnikov i metallov [Nanolithography by local anodic oxidation of semiconductors and metals], Izvestiya TRTU [Izvestiya TSURE], 2005, No. 9 (59), pp. 61.
21. Ageev O.A., Konoplev B.G., Smirnov V.A. i dr. Fotoaktivatsiya protsessov formirovaniya nanostruktur metodom lokal'nogo anodnogo okisleniya plenki titana [The photo-activation of processes of formation of nanostructures by local anodic oxidation film of titanium], Izvestiya vysshikh uchebnykh zavedeniy. Elektronika [Izvestiya of higher educational institutions. Elec-tronics], 2010, No. 2 (82), pp. 23-30.
22. Ageev O.A., Polyakov V.V., Smirnov V.A., Kolomiytsev A.S. Issledovanie vliyaniya rezhimov fotonnoy stimulyatsii na protsessy nanolitografii metodom lokal'nogo anodnogo okisleniya [Study of the effect of photon stimulation on the processes nanolithography by local anodic oxidation], Izvestiya TRTU [Izvestiya TSURE], 2006, No. 9-1 (64), pp. 117.
23. Avilov V.I., Ageev O.A., Smirnov V.A. i dr. Formirovanie i issledovanie matritsy memristorov na osnove oksida titana metodami zondovoy nanotekhnologii [The formation and study of the memristor matrix based on titanium oxide by scanning probe nanotechnology], Izvestiya vysshikh uchebnykh zavedeniy. Elektronika [Izvestiya of higher educational institutions. Elec-tronics], 2014, No. 2 (106), pp. 50-57.
24. Ageev O.A., Konoplev B.G., Smirnov V.A. i dr. Issledovanie rezhimov fotonnostimuli-rovannoy zondovoy nanolitografii metodom lokal'nogo anodnogo okisleniya plenki titana [The study of modes of potenetial-based probe nanolithography by local anodic oxidation film of titanium], Nano- i mikrosistemnaya tekhnika [Nano- and Microsystem technology], 2008, No. 1 (90), pp. 14-16.
25. Ageev O.A., Konoplev B.G., Smirnov V.A. i dr. Zondovaya fotonno-stimulirovannaya nanolitografiya struktur na osnove plenki titana [The probe photon-induced nanolithography structures based on films of titanium], Mikroelektronika [Microelectronics], 2007, Vol. 36,
No. 6, pp. 403-408.
26. Ageev O.A. Solodovnik M.S., Smirnov V.A. i dr. Issledovanie rezhimov formirovaniya oksidnykh nanorazmernykh struktur arsenida galliya metodom lokal'nogo anodnogo okisleniya [The study of the modes of formation of nanoscale oxide structures of gallium arsenide by local anodic oxidation], Izvestiya vuzov. Elektronika [Izvestiya of higher educational institutions. Electronics], 2012, No. 2 (94), pp. 43-50.
27. Ageev O.A., Solodovnik M.S., Smirnov V.A. i dr. Issledovanie rezhimov lokal'nogo anodnogo okisleniya epitaksial'nykh struktur arsenida galliya [Gallium arsenide epitaxial structures local anodic oxidation regimes investigation], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 4 (117), pp. 8-13.
28. Ageev O.A., Balakirev S.V., Bykov Al.V. et al. Development of new meta-materials for advanced ele-ment base of micro- and nanoelectronics, and microsystem devices, In: Advanced Materials – Manufacturing, Physics, Mechanics and Applica-tions. Parinov, Chang, Topolov (Eds.). Springer International Publishing Switzerland. 2016, pp. 563-580.
29. Ageev O.A., Belyaev A.E., Boltovets N.S., Konakova R.V., Milenin V.V., Pilipenko V.A. Fazy vnedreniya v tekhnologii poluprovodnikovykh priborov i SBIS [The implementation phase in the technology of semiconductor devices and VLSI]. Kharkov: NTK “Institut monokristallov”, 2008, 392 p.
30. Ageev O.A., Blinov Yu.F., Il’in O.I., Kolomiitsev A.S., Konoplev B.G., Rubashkina M.V., Smirnov V.A., Fedotov A.A. Memristor effect on bundles of vertically aligned carbon nanotubes tested by scanning tunnel microscopy, Technical Physics, 2013, Vol. 58, No. 12,
pp. 1831-1836.
31. Ageev O.A, Alekseev A.N., Sokolov I.A., Konoplev B.G. Kompleksnyy podkhod k tekhnologicheskomu osnashcheniyu tsentra prikladnykh razrabotok. Opyt realizatsii v NOTs «Nano-tekhnologii» YuFU [Comprehensive approach to technological equipping for R&D center. The experience in implementing of SEC «Nanotechnology» SFedU] Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 4 (117), pp. 207-210.
32. Ageev O.A., Syurik Yu.V., Klimin V.S., Fedotov A.A. Poluchenie nanokompozitnykh polimernykh materialov, modifitsirovannykh uglerodnymi nanostrukturami, na osnove NANOFAB NTK-9 [Production of nanocompound polymeric materials based on multifunctional modular nanotechnologycal platform NANOFAB NTK-9], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2009, No. 1 (90), pp. 135-142.
33. Ageev O.A., Bykov V.A. Tekhnologicheskoe oborudovanie dlya sozdaniya nanosistemnoy tekhniki [Technological equipment for the creation of nanosystem technology]m Nanotekhnologii. Ekologiya. Proizvodstvo [Nanotechnology. Ecology. Production], 2010,
No. 5, pp. 68-70.
34. Dostanko A.P., Avakov S.M., Ageev O.A. i dr. Tekhnologicheskie kompleksy integrirovannykh protsessov proizvodstva izdeliy elektroniki [Technological systems integrated bathrooms of the production processes of electronics products]. Minsk: Belorusskaya nauka. 2016, 251 p.
35. Sechenov D.A., Kasimov F.D., Agaev F.G., Svetlichnyy A.M., Ageev O.A. Aktiviruemye protsessy mikroelektronnoy tekhnologii [Activated processes in microelectronic technology]. Baku: Izd-vo ELM, 2000, 258 p.
36. Ageev O.A., Dostanko A.P., Tolochko N.K., Bordusov S.V. Intensifikatsiya protsessov formirovaniya tverdotel'nykh struktur kontsentrirovannymi potokami energii [Intensification of processes of formation of solid structures by the concentrated streams of energy]. Minsk: Bestprint, 2005, 682 p.
37. Gusev E.Yu., Gamaleev V.A., Mikhno A.S., Mironenko O.O. Issledovanie rezhimov naneseniya nanokristallicheskikh plenok oksida tsinka metodom vysokochastotnogo reaktivnogo magnetronnogo raspyleniya [The study of modes of application of nanocrystalline films of ZnO by RF reactive magnetron sputtering], Fundamental'nye issledovaniya [Fundamental research], 2012, No. 11-2, pp. 389-391.
38. Gusev E.Yu., Zhityaeva Yu.Yu., Kolomiytsev A.S., Gamaleev V.A., Kots I.N., Bykov A.V. Issledovanie rezhimov zhidkostnogo travleniya zhertvennogo sloya SiO2 dlya formirovaniya mikromekhanicheskikh struktur na osnove Si*/SiO2/Si [Research of wet sio2 sacrificial layer etching for mems structures forming based on poly-SI*/SIO2/SI], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 2 (163), pp. 236-245.
39. Gusev E.Yu., Zhityaeva Yu.Yu., Bykov A.V., Bespoludin V.V. Issledovanie elektrofizicheskikh svoystv plenok polikristallicheskogo kremniya dlya sozdaniya mikroelektromekhanicheskikh sistem [Research of electrophysical properties of polycrystalline silicon films for mems struc-tures forming], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 9 (170), pp. 126-134.
40. Gusev E.Yu., Gamaleev V.A., Mikhno A.S., Bykov A.V., Zhityaeva Yu.Yu. Optimizatsiya konstruktsii kontaktno-metallizatsionnoy sistemy p'ezokantilevera dlya atomno-silovoy mikroskopii [Structural optimization of the contact system of the piezocantilever for atomic force microscopy], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 9 (158), pp. 158-165.

Comments are closed.