Authors I.V. Pisarenko
Month, Year 10, 2016 @en
Index UDC 621.383.52
DOI 10.18522/2311-3103-2016-10-122128
Abstract In this paper, we discuss the problem of research and development of models and methods designed for the simulation of optoelectronic components for optical interconnections of integrated circuits. The prospective concept of the implementation of multi-core ultra-large-scale optical integrated circuits with silicon digital cores and AIIIBV inter-core integrated optical commutation systems is under consideration. High-speed semiconductor photodetectors designed for the opera-tion as parts of integrated inter-core optical interconnections together with the lasers-modulators are the objects of this research. The aforementioned lasers-modulators can generate optical signals with terahertz modulation frequencies. This paper is aimed at the development of models and modelling aids allowing simulating the transients which take place in structures of photosensitive devices during the detection of subpicosecond laser pulses. We have applied the proposed numerical models, technique of drift-diffusion simulation, and software for the research of the performance of GaAs p-i-n structures and Schottky-barrier photodiodes. The scientific novelty of this paper is determined by the development of the effective technique of drift-diffusion numerical simulation based on the application of upwind and explicit difference schemes, Gummel iteration method, and different variable bases. The consumption of computational and time resources necessary for the implementation of the proposed technique is three times less than it is required for its analogs. We have developed the applied software in GNU Octave program using the MATLAB programming language for the implementation of the aforementioned models and methods. This software allows studying the p-i-n and Schottky-barrier photodiodes with different electrophysical, constructive and technological parameters.

Download PDF

Keywords Integrated optical commutation systems; high-speed photodetectors; numerical simulation; drift-diffusion models.
References 1. International Technology Roadmap for Semiconductors: 2013 Edition. Interconnect, Semicon-ductor Industry Association. Available at:
2. Rakheja S., Naeemi A. Modeling interconnects for post-CMOS devices and comparison with copper interconnects, IEEE Transactions on Electron Devices, 2011, Vol. 58, pp. 1319-1328.
3. Subash S., Kolar J., Chowdhury M.H. A new spatially rearranged bundle of mixed carbon nano-tubes as VLSI interconnection, IEEE Transactions on Nanotechnology, 2013, Vol. 12, pp. 3-12.
4. Naeemi A., Meindl J.D. Conductance modeling for graphene nanoribbon (GNR) interconnects, IEEE Electron Device Letters, 2007, Vol. 28, pp. 428-431.
5. Chang M.-C.F., Socher E., Tam S.-W., Cong J., Reinman G. RF Interconnects for Communica-tions On-Chip, Proceedings of the IEEE International Symposium on Physical Design, Port-land, USA, 13–16 April 2008, pp. 78-83.
6. Miller D.A.B. Optical interconnects to electronic chips, Applied Optics, 2010, Vol. 49,
pp. F59-F70.
7. Ohashi K., Nishi K., Shimizu T., Nakada M., Fujikata J., Ushida J., Toru S., Nose K., Mizuno M., Yukawa H., et al. On-chip optical interconnect, Proceedings of the IEEE, 2009, Vol. 97, pp. 1186-1198.
8. Belkin M., Sigov A. Opticheskie mezhsoedineniya v integral'nykh skhemakh [Optical intercon-nects in integrated circuits], Nanoindustriya [Nanoindustry], 2012, No. 1 (31), pp. 8-14.
9. Ohira K., Kobayashi K., Iizuka N., Yoshida H., Ezaki M., Uemura H., Kojima A., Nakamura K., Furuyama H., Shibata H. On-chip optical interconnection by using integrated III-V laser diode and photodetector with silicon waveguide, Optics Express, 2010, Vol. 18, pp. 15440-15447.
10. Konoplev B.G., Ryndin E.A., Denisenko M.A. Metod postroeniya integral'nykh sistem op-ticheskoy kommutatsii mnogoyadernykh UBIS [Method of constructing integrated switching systems of multi-core ulsi], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 4 (117), pp. 21-27.
11. Pisarenko I.V., Ryndin E.A., Denisenko M.A. Diffusion-drift model of injection lasers with double heterostructure, Journal of Physics: Conference Series, 2015, Vol. 586, pp. 012-015.
12. Konoplev B.G., Ryndin E.A., Denisenko M.A. Diffusion-drift model of the transport of charge carriers and photons in injection lasers, Technical Physics Letters, 2015, Vol. 41, pp. 587-590.
13. Saleh B.E.A., Teich M.C. Fundamentals of Photonics. 2nd. ed. Wiley-Interscience, 2007.
14. Dirochka A.I., Kurbatov L.N. Fotoelektronika [Photonics], Bazovye lektsii po elektronike [Basic lectures on electronics]. Vol. II. Tverdotel'naya elektronika: Sb. pod obshch. red.
V.M. Proleyko [Solid-state electronics: a Collection ed. by V.M. Proleiko]. Moscow: Tekhnos-fera, 2009, pp. 206-250.
15. Abramov I.I. Problemy i printsipy fiziki i modelirovaniya pribornykh struktur mikro- i nanoelektroniki. Ch. II. Modeli poluklassicheskogo podkhoda [Problems and principles of physics and modeling of device structures of micro- and nanoelectronics. Part II. Model semiclassical approach], Nano- i mikro-sistemnaya tekhnika [Nano- and micro-system tech-nique], 2006, No. 9, pp. 26-36.
16. Abramov I.I. Modelirovanie fizicheskikh protsessov v elementakh kremnievykh integral'nykh mikroskhem [Modeling of physical processes in elements of silicon integrated circuits]. Minsk: BGU, 1999, 189 p.
17. Palankovski V., Quay R. Analysis and Simulation of Heterostructure Devices. Wien: Springer-Verlag, 2004.
18. Unlu M.S., Strite S. Resonant cavity enhanced photonic devices, J. Appl. Phys., 1995, Vol. 78, No. 2, pp. 607-639.
19. Samarskiy A.A., Gulin A.V. Chislennye metody: ucheb. posobie dlya vuzov [Numerical methods: textbook. the manual for high schools]. Moscow: Nauka, 1989, 432 p.
20. Kulikova I.V., Lysenko I.E., Pristupchik N.K., Lysenko A.S. Chislennoe reshenie nestatsionarnoy fundamental'noy sistemy uravneniy poluprovodnika v diffuzionno-dreyfovom priblizhenii [Numerical solution of nonstationary fundamental equation system semiconductor in the diffu-sion-drift approximation], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 9 (158), pp. 106-111.

Comments are closed.