Article

Article title DEVELOPMENT OF FABRICATION TECHNOLOGY OF POLYCRYSTALLINE SILICON MICROMECHANICAL ACCELEROMETER BY SURFACE MICROMACHINING
Authors E.Yu. Gusev
Section SECTION I. ELECTRONICS AND NANOTECHNOLOGY
Month, Year 10, 2016 @en
Index UDC
DOI 10.18522/2311-3103-2016-10-5264
Abstract This goal is to develop a process flow of fabrication of integral multiaxis micromechanical accelerometer using surface micromachining at research and educational center “Nanotechnologies” and its multiple-access computing center at Southern Federal University. The paper presents the results of development. The process flow contains over 20 primary operations (substrate cleaning, plasma deposition of silicon nitride, polycrystalline silicon and silicon oxide, its plasma etching, wet etching of silicon oxide, polysilicon doping, deposition of contacts and its thermal annealing, as well as photolithography), including 5 lithography steps using 5 masks with minimum features size of 1 micron. The experimental results and recommendations are presented for selected processing steps. For polysilicon deposited and ex-situ doped with grain size and RMS roughness of 40–250 nm and 1.1–3.5 nm, the concentration, mobility of carriers and sheet resistance of 2·1020 cm-3, 30 cm2/(V·s) and 2-9 Ω/ were obtained. The microhardness and young modulus were 14–20 GPa and 150–250 GPa, respectively. Questions of accelerometer design, masks development and packaging are not affected. The results of the work can be used for process flow developments of micromechanical gyroscopes, accelerometers and MEMS&NEMS devices.

Download PDF

Keywords Nanotechnology; MEMS; surface micromachining; process flow; technological steps; poly-crystalline silicon
References 1. Sniegowski J.J., Boer M.P. IC-Compatible polysilicon surface micromachining, Annual Re-view of Materials Research, 2000, Vol. 30, pp. 299-333.
2. Ageev O.A., Dostanko A.P., Tolochko N.K., Bordusov S.V. Intensifikatsiya protsessov formirovaniya tverdotel'nykh struktur kontsentrirovannymi potokami energii [Intensification of processes of formation of solid structures by the concentrated streams of energy]. Minsk: Bestprint, 2005, 682 p.
3. Sechenov D.A., Kasimov F.D., Agaev F.G., Svetlichnyy A.M., Ageev O.A. Aktiviruemye protsessy mikroelektronnoy tekhnologii [Activated processes in microelectronic technology]. Baku: Izd-vo ELM, 2000, 258 p.
4. Ageev O.A., Belyaev A.E., Boltovets N.S., Konakova R.V., Milenin V.V., Pilipenko V.A. Fazy vnedreniya v tekhnologii poluprovodnikovykh priborov i SBIS [The implementation phase in the technology of semiconductor devices and VLSI]. Khar’kov: NTK «Institut monokristallov», 2008, 392 p.
5. Maboudian R. Surface processes in MEMS technology, Surface Science Reports, 1998, Vol. 30, pp. 207-269.
6. Berman D., Krim J. Surface science, MEMS and NEMS: Progress and opportunities for sur-face science research performed on, or by, microdevices, Progress in Surface Science, 2013, Vol. 88, pp. 171-211.
7. French P.J. Polysilicon: a versatile material for Microsystems, Sensors and actuators A Physi-cal, 2002, Vol. 99, pp. 3-12.
8. Ageev O.A., Kolomiitsev A.S., Konoplev B.G. Formation of Nanosize Structures on a Silicon Sub-strate by Method of Focused Ion Beams, Semiconductors, 2011, Vol. 45, No. 13, pp. 89-92.
9. Konoplev B.G., Ageev O.A., Smirnov V.A., Kolomiytsev A.S., Il'in O.I. Modifikatsiya zondovykh datchikov-kantileverov dlya atomno-silovoy mikroskopii metodom fokusirovannykh ionnykh puchkov [Modification of the probe-cantilever for atomic force mi-croscopy using focused ion beams], Nano- i mikrosistemnaya tekhnika [Nano- and Microsys-tem technology], 2011, No. 4, pp. 4-8.
10. Ageev O.A., Kolomiytsev A.S., Bykov A.V., Smirnov V.A., Kots I.N. Fabrication of advanced probes for atomic force microscopy using focused ion beam, Microelectronics Reliability, 2015, Vol. 55, Is. 9-10, pp. 2131-2134.
11. Avilov V.I., Ageev O.A., Blinov Yu.F., Konoplev B.G., Polyakov V.V., Smirnov V.A., Tsukanova O.G. Modelirovanie protsessa formirovaniya oksidnykh nanorazmernykh struktur metodom lokal'nogo anodnogo okisleniya poverkhnosti metalla [Modeling of the process of forming the oxide nano structures by the local anodic oxidation of metal surface], Zhurnal tekhnicheskoy fiziki [Journal of technical physics], 2015, Vol. 85, No. 5, pp. 88-93.
12. Ageev O.A., Syurik Yu.V., Klimin V.S., Fedotov A.A. Poluchenie nanokompozitnykh polimernykh materialov, modifitsirovannykh uglerodnymi nanostrukturami, na osnove NANOFAB NTK-9 [Production of nanocompound polymeric materials based on multifunc-tional modular nanotechnologycal platform NANOFAB NTK-9], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2009, No. 1 (90), pp. 135-142.
13. Senturia S.D. Microsystem design. Kluwer academic publishers: New York: Boston: Dor-drecht: London: Moscow, 2002, 689 p.
14. Konoplev B.G., Lysenko I.E., Ezhova O.A.. Integral'nyy mikromekhanicheskiy giroskop-akselerometr [Integrated micromechanical gyroscope-accelerometer]. Patent 2597950 RF No. 2015124221/28; stated 22.06.15; published 20.09.16, bull. No. 26.
15. Lysenko I.E., Ezhova O.A. Issledovanie vliyaniya parametrov elementov podvesov na sobstvennuyu chastotu konstruktsii mikromekhanicheskogo sensora lineynykh uskoreniy [Re-search of influence of parameters of elements of the suspensions on the natural frequency de-sign of micromechanical linear acceleration sensor], Nano- i mikrosistemnaya tekhnika [Nano- and Microsystem technology], 2016, No. 6, pp. 386-390.
16. Alekseev A.N., Sokolov I.A., Ageev O.A., Konoplev B.G. Kompleksnyy podkhod k tekhnologicheskomu osnashcheniyu tsentra prikladnykh razrabotok. Opyt realizatsii v NOTs «Nanotekhnologii» YuFU [Comprehensive approach to technological equipping for R&D cen-ter. The experience in implementing of SEC «Nanotechnology» SFedU], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 4 (117), pp. 207-210.
17. Ageev O.A., Bykov V.A. Tekhnologicheskoe oborudovanie dlya sozdaniya nanosistemnoy tekhniki [Technological equipment for the creation of nanosystem technology], Nanotekhnologii. Ekologiya. Proizvodstvo [Nanotechnology. Ecology. Production], 2010, No. 5, pp. 68-70.
18. Ageev O.A., Gusev E.Yu., Zhityaeva Yu.Yu., Bykov Al.V., Bespoludin V.V. Razrabotka unifitsirovannoy tekhnologii izgotovleniya polikremnievykh mikromekhanicheskikh giroskopov i akselerometrov [The development of standardized technologies of manufacturing polysilicon micromechanical gyros and accelerometers], Sotrudnichestvo stran BRIKS dlya ustoychivogo razvitiya: Materialy mezhdunarodnoy konferentsii molodykh uchenykh stran BRIKS (Rostov-na-Donu, 24-26 sentyabrya 2015 g.) [BRICS Cooperation for sustainable de-velopment: proceedings of the international conference of young scientists in the BRICS coun-tries (Rostov-on-Don, September 24-26, 2015)]: in 2 vol. 2. Rostov-on-Don: Izd-vo YuFU, 2015, pp. 67-70.
19. Ageev O.A., Balakirev S.V., Bykov Al.V., Gusev E.Yu. [et al.]. Development of new metamaterials for advanced element base of micro- and nanoelectronics, and microsystem de-vices, Chapter In: Advanced Materials – Manufacturing, Physics, Mechanics and Applica-tions. Parinov, I.A., Chang, Sh.-H., Topolov, V.Yu. (Eds.). London: Springer International Pub-lishing Switzerland, 2016, pp. 563-580.
20. Velichko R.V., Gusev E.Yu., Gamaleev V.A., Mikhno A.S., Bychkova A.S. Issledovanie rezhimov plazmokhimicheskogo osazhdeniya plenok nano- i polikristallicheskogo kremniya [The study of modes of plasma chemical deposition of nano - and polycrystalline silicon], Fundamental'nye issledovaniya [Fundamental research], 2012, No. 11, pp. 1176-1179.
21. Eroshina Yu.Yu., Gamaleev V.A., Gusev E.Yu. Poluchenie polikristallicheskikh konsol'nykh struktur metodom plazmokhimicheskogo osazhdeniya [Obtaining a polycrystalline cantilever structures by plasma deposition of], Fundamental'nye problemy radioelektronnogo priborostroeniya [Fundamental problems of Radioelectronics instrument-making], 2012, Vol. 12, No. 2, pp. 146-148.
22. Gusev E.Yu., Zhityaeva Yu.Yu., Bykov A.V., Rudyk N.N. Optimizatsiya konstruktsii inertsionnoy massy mikromekhanicheskogo inertsionnogo datchika, izgotovlennoy s ispol'zovaniem zhidkostnogo travleniya [Design optimization of inertial mass of a microme-chanical inertial sensor fabricated using the liquid etching ], Materialy VII Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii «Mikro- i nanotekhnologii v elektronike» [Materials of VII International scientific-technical conference "Micro- and nanotechnologies in electron-ics"], 2015, pp. 326-328.
23. Gusev E.Yu., Zhityaeva Yu.Yu., Kolomiytsev A.S., Gamaleev V.A., Kots I.N., Bykov A.V. Issledovanie rezhimov zhidkostnogo travleniya zhertvennogo sloya SiO2 dlya formirovaniya mikromekhanicheskikh struktur na osnove Si*/SiO2/Si [Research of wet SIO2 sacrificial layer etching for mems structures forming based on poly-SI*/SIO2/SI], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 2 (163), pp. 236-245.
24. Gusev E.Yu., Zhityaeva Yu.Yu., Bykov A.V., Bespoludin V.V. Issledovanie elektrofizicheskikh svoystv plenok polikristallicheskogo kremniya dlya sozdaniya mikroelektromekha-nicheskikh sistem [Research of electrophysical properties of polycrystalline silicon films for mems struc-tures forming], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 9 (170), pp. 126-134.
25. Ageev O.A., Gusev E.Yu., Jityaeva J.Yu., Kolomiytsev A.S., Bykov Al.V. Fabrication of polycrystalline silicon elements for micro- and nanomechanical accelerometers. Chapter In: Advanced Materials, Me-chanical and Structural Engineering. – Hong, Seo & Moon (Eds.). London: Taylor & Francis Group: CRC Press: Balkema, 2016, pp. 13-16.
26. Ageev O.A., Gusev E.Yu., Jityaeva J.Y., Ilina M.V., Bykov Al.V. Grain size and doping effect on structure and electromechanical properties of polycrystalline silicon for MEMS applica-tions, Journal of Physics: Conference Series, 2016, Vol. 741, pp. 012001.
27. Ageev O.A., Konoplev B.G., Rubashkina M.V., Rukomoykin A.V., Smirnov V.A., Solodovnik M.S. Issledovanie vliyaniya na modul' Yunga geometricheskikh parametrov orientirovannykh nitevidnykh nanokristallov GaAs metodom atomno-silovoy mikroskopii [Study of the effect on the young's modulus of geometric parameters of oriented GaAs whisker nanocrystals by atomic force microscopy], Rossiyskie nanotekhnologii [Russian nanotechnology], 2013, Vol. 8, No. 1-2, pp. 27-32.
28. Dostanko A.P., Avakov S.M., Ageev O.A. [i dr.]. Tekhnologicheskie kompleksy integrirovannykh protsessov proizvodstva izdeliy elektroniki [Technological systems integrat-ed production processes of electronics products]. Minsk: Belorusskaya nauka, 2016, 251 p.
29. Bachman M. RCA-1 Silicon wafer cleaning [Electronic resource]. Available at: http:// www.ampel.ubc.ca/nanofab/sop/rca-clean-1.pdf. (accessed 8 October 2014).
30. Kern W. Handbook of semiconductor wafer cleaning technology: science, technology, and applications. Noyes: William Andrew, 1993, 623 p.

Comments are closed.