Authors L.K. Babenko, D.V. Golotin, O.B. Makarevich
Month, Year 12, 2016 @en
Index UDC 004.056.55
DOI 10.18522/2311-3103-2016-12-4254
Abstract In today"s world of the Internet of Things a special place takes the lightweight cryptography, which provides the most effective security networks of various types. One of the challenges is to optimize the lightweight cryptography hardware solutions to improve the efficiency of their use. Lightweight cryptography is a new unexplored direction. The subject of this article is a stream cipher Trivium. This cipher is a finalist of the project eSTREAM, the profile 2 (stream ciphers for hardware implementation). The target is a study and implementation of the hardware model light-weight cipher Trivium, in comparison with the other implementations. The results can be used in solving the problems of data protection in resource-limited settings. Cipher Trivium is one of the most efficient in terms of performance ratio, reliability and lightness. To determine the characteris-tics of the represented hardware implementation of the cipher carried out is the analysis of experi-mental data on the developed model. Device encryption has been implemented on board Marsohod2bis, FPGA cyclone EP4CE6E22C8 c 6272 elements. The frequency of the internal oscillator circuit is 100 MHz. Encrypting device processes the data from the computer, sent over the virtual com-port, realized via USB. The transfer of data from the computer to the FPGA and back performs client program Serial Com port v1.2. The article provides a diagram of the device and its units. Given are the results of experimental studies of the created device and its effectiveness as-sessment compared with other existing implementations. In conclusion, the conducted work is summed up, theoretical and practical results, a forecast of possible efficiency gains are presented.

Download PDF

Keywords The FPGA; PLD; the Verilog; Internet of things; Quartus II; Trivium; hardware implemen-tation; lightweight cryptography; com-port.
References 1. Zhukov A.E. Legkovesnaya kriptografiya [Lightweight cryptography]. Part 1, Voprosy kiberbezopasnosti [Cybersecurity], 2015, No. 1 (9), pp. 18.
2. Zhukov A.E. Legkovesnaya kriptografiya [Lightweight cryptography]. Part 2, Voprosy kiberbezopasnosti [Cybersecurity], 2015, No. 2 (10), pp. 10.
3. Istoriya o tom, kak odin zloumyshlennik zastavil tysyachi printerov po vsemu miru pechatat' listovki so svastikoy [The story of how one man made thousands of printers worldwide to print leaflets with a swastika], GeekTiemes kollektivnyy blog [GeekTiemes collective blog]. Available at: (accessed 4 February 2016).
4. Preneel B. Perspectives on Lightweight Cryptography, Bart Pernel pesonal site. Available at: (accessed 20 Oc-tober 2015).
5. Aoki K., Ichikawa T., Kanda M., Matsui M., Moriai S., Nakajima J., Tokita T. Camellia:
A 128-Bit Block Cipher Suitable for Multiple Platforms – Design and Analysis, Selected Areas in Cryptography (SAC), LNCS, 2001, Vol. 2012, pp. 39-56.
6. Poschmann A., Leander G., Schramm K., Paar C. New lighweight crypto algorithms for RFID, In Proceedings of The IEEE International Symposium on Circuits and Systems 2007 – ISCAS 2007, 2007, pp. 1843-1846.
7. De Canniere C. and Preneel B. Trivium Specifications, eSTREAM: ECRYPT Stream Cipher Project Report 2005/030. Available at: (accessed 10 November 2015).
8. De Canniere C. and Preneel B. Trivium A Stream Cipher Construction Inspired by Block Cipher Design Principles, eSTREAM: ECRYPT Stream Cipher Project Report 2006/021 (2015). Available at: (accessed 13 December 2015).
9. eSTREAM portfolio, eSTREAM, the ECRYPT Stream Cipher Project, 2015. Available at: (accessed 15 January 2016).
10. Khazaei S., Hasanzadeh M.M., and Kiaei M.S. Linear Sequential Circuit Ap-proximation of Grain and Trivium Stream Ciphers, eSTREAM, ECRYPT StreamCipher Project, Report 2005/063. Available at: (accessed
13 December 2015).
11. Babenko L.K., Golotin D.V. Ob osobennostyakh funktsionirovaniya i realizatsii potochnogo shifra Trivium [The main features functioning and implementation stream cipher Trivium], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2015, No. 5 (166), pp. 103-111.
12. Mora Gutiérrez, Jiménez Fernández, Valencia Barrero. Low power implementation of Trivium stream cipher. Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation, 22nd International Workshop, 2012, pp. 113-120.
13. Good T., Benaissa M. Hardware Results for selected Stream Cipher Candidates. State of the Art of Stream Ciphers 2007, SASC: Workshop Record, February 2007, pp. 120-128.
14. Babenko L.K., Bespalov D.A., Makarevich O.B., Chesnokov R.A., Trubnikov Ya.A. Razrabotka i issledovanie programmno-apparatnogo kompleksa shifrovaniya po algoritmu Present dlya resheniya zadach maloresursnoy kriptografii [Software and hardware development and research of encryption algorithm present for solving problems of the lightweight cryptography], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2014, No. 2 (151), pp. 174-180.
15. Spetsifikatsiya platy Marsohod2bis [Specification Board Marsohod2bis], Marsohod: open source hardware project. FPGA i CPLD blog, 2016. Available at: (accessed 20 January 2016).
16. Interfeysnyy modul' na FT2232D [Interface module for FT2232D], Easy Electronics: blog posvyashchennyy tsifrovoy elektronike. Available at: (accessed 11 October 2015).
17. UART i s chem ego edyat [UART and with what it eat], Geektimes: kollektivnyy blog [Geektimes: a collective blog], 2016. Available at:
18. Axel Poschmann: Lightweight Cryptography From An Engineers Perspective, Horst-Görtz-Institut für Sicherheit, 2016, pp. 28-32.
19. Simulyator ModelSim [Simulator ModelSim], Marsohod: open source hardware project. Available at: (accessed 11 December 2015).
20. Nele Mentens, Jan Genoe, Bart Preneel, Ingrid Verbauwhede. A low-cost implementation of Trivium, Preproceeding of SACS, 2008, pp. 197-204.

Comments are closed.