Authors M.V. Yakobovskiy, A.A. Bondarenko, A.V. Vyrodov, S.K. Grigoriev, M.A. Kornilina, A.I. Plotnikov, S.V. Polyakov, I.V. Popov, D.V. Puzyrkov, S.A. Soukov
Month, Year 12, 2016 @en
Index UDC 519.687:519.688:519.673:519.63
DOI 10.18522/2311-3103-2016-12-103114
Abstract Nowadays a scientific and technical progress is connected with the solution of topical prob-lems of nanotechnology. A great part of nanotechnology problems is studied the methods of math-ematic modeling with the help of high-performance computers. In recent years such modeling is conducted within the framework of cloud technologies. Created are paid and free cloud services which provide great capabilities for modeling the properties of micro- and nanosystems having perspectives for application in different industries. The cloud service intended for the solution of multi-scale problems of nanotechnology on clusters and supercomputer systems is presented. The need of integration: (a) ideas and knowledge on this applied problem, (b) experts in this scientific field and programmers for the supercomputer systems, (c) various technologies of modeling and a set of packages of applied programs, (d) various computing resources which are available for the authors and its partners, was motivation to creation of the cloud service. The prototype of the cloud environment was realized in the form of the KIAM Multilogin service and the applied software available from virtual machines of users became a result of this work. The first application of created service is the parallel software tool aimed to supercomputer simulations of nonlinear gas-dynamics processes in micro-channels of technical systems. On its example it was a success to investigate problems and define ways of realization of systematic supercomputer calculations of problems of this class. The offered realization of service has allowed: (a) to provide fault-tolerant scale computation of several versions of the task on a set of clusters and supercomputers having different location and architecture; (b) to carry out the detailed analysis of the received numerical results. The developed tools allow performing calculations with minimal user intervention. The data transfer between computer clusters and programs restarting in order to continue the calculation is provided automatically. Both supplementary and resulting data of the running computer system is transferred to the main store in the background mode. Checkpoints are also backed up to all complementary computer systems. Analysis of KIAM Job_Control management environment operation showed that the time loss associated with data transfer between clusters and tasks re-starting decreased by approximately 2.5–3 times compared with manual-controlled operation.

Download PDF

Keywords Cloud service; virtualization; control of resources; nanotechnology problems; multiscale computer simulation of nonlinear gas-dynamic processes in micro-channels of technical systems.
References 1. Pul Ch., Ouens F. Nanotekhnologii [Nanotechnology]. Moscow: Tekhnosfera, 2006, 260 p.
2. Balabanov V.I. Nanotekhnologii. Nauka budushchego [Nanotechnology. Science of the future]. Moscow: Eksmo, 2008, 256 p.
3. Aktual'nye problemy nanotekhnologiy – kurs lektsiy v Nauchno-obrazovatel'nom tsentre po nanotekhnologiyam MGU im. M.V. Lomonosova [Current challenges of nanotechnology – a course of lectures at Scientific and educational centre for nanotechnologies, Moscow state University. M.V. Lomonosov]. Available at:
4. Karniadakis G., Beskok A., Aluru N. Microflows and Nanoflows: Fundamentals and Simulation. Springer, 2005, 824 p.
5. King M., Gee D. Multiscale Modeling of Particle Interactions: Applications in Biology and Nanotechnology. John Wiley & Sons, Inc., Hoboken, New Jersey, 2010, 388 p.
6. Massobrio C., Bulou H., Goyhenex C. Atomic-Scale Modeling of Nanosystems and Nanostructured Materials. Springer-Verlag Berlin Heidelberg, 2010, 371 p.
7. Eom K. Simulations in Nanobiotechnology. – Taylor & Francis Group, 2012. – 552 p.
8. Musa S.M. Computational Finite Element Methods in Nanotechnology. CRC Press, 2012, 640 p.
9. Schmauder S., Schafer I. Multiscale Materials Modeling: Approaches to Full Multiscaling. Walter de Gruyter GmbH, Berlin/Boston, 2016, 347 p.
10. Bromley S.T., Zwijnenburg M.A. Computational Modeling of Inorganic Nanomaterials. Taylor & Francis Group, LLC, Boca Raton, FL, USA, 2016, 429 p.
11. Jennings R. Cloud Computing with the Windows Azure Platform. Wiley Publishing, 2009, 363 p.
12. Furht B., Escalante A. Handbook of Cloud Computing. Springer, 2010, 655 p.
13. Ahson S.A., Ilyas M. Cloud Computing and Software Services. Theory and Techniques. CRC Press, 2011, 458 p.
14. Buyya R., Broberg J., Goscinski A. Cloud Computing. Principles and Paradigms. John Wiley, 2011, 675 p.
15. Calheiros R.N., Ranjan R., Beloglazov A., De Rose C.A.F., Buyya R. CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provi-sioning algorithm, Software - Practice and Experience, 2011, Vol. 41, pp. 23-50.
16. Mizgulin V., Gol'dshteyn S., Kadushnikov R. "Oblachnaya" platforma dlya provedeniya NIOKR v nanotekhnologiyakh ["Cloud-based" platform for research and development in nanotechnology], Nanoindustriya [Nanoindustry], 2011, V. 5, pp. 60-64.
17. Mahmood Z. Cloud Computing Methods and Practical Approaches. Springer, 2013, 353 p.
18. Cayirci E. Modeling and simulation as a cloud service: a survey, Proceedings of the 2013 Winter Simulation Conference: Simulation: Making Decisions in a Complex World. Washington, D.C., IEEE Press, December 08-11, 2013, pp. 389-400.
19. Yang C., Huang Q. Spatial Cloud Computing: A Practical Approach. CRC Press, 2014, 375 p.
20. Safonov V.O. Trustworthy cloud computing. John Wiley & Sons, 2017, 337 p.
21. Polyakov S.V., Vyrodov A.V., Puzyr'kov D.V., Yakobovskiy M.V. Oblachnyy servis dlya resheniya mnogomasshtabnykh zadach nanotekhnologii na superkomp'yuternykh sistemakh [Cloud service for solving multiscale problems of nanotechnology on supercomputing systems], Trudy Instituta sistemnogo programmirovaniya RAN [Proceedings of Institute for system programming of Russian Academy of Sciences], 2015, Vol. 27, Issue 6, pp. 409-420.
22. Karamzin Yu.N., Kudryashova T.A., Podryga V.O., Polyakov S.V. Mnogomasshtabnoe modelirovanie nelineynykh protsessov v tekhnicheskikh mikrosistemakh [Multiscale simulation of nonlinear processes in technical Microsystems], Matematicheskoe modelirovanie [Mathematical modeling], 2015, Vol. 27, No. 7, pp. 65-74.
23. Podryga V.O., Polyakov S.V., Puzyr'kov D.V. Superkomp'yuternoe molekulyarnoe modelirovanie termodinamicheskogo ravnovesiya v mikrosistemakh gaz-metall [Supercomputer molecular modeling of thermodynamic equilibrium in gas Microsystems-metal], Vychislitel'nye metody i programmirovanie [Computing methods and programming], 2015, Vol. 16, No. 1, pp. 123-138.
24. Podryga V.O., Polyakov S.V. Molekulyarno-dinamicheskoe modelirovanie ustanovleniya termodinamicheskogo ravnovesiya v nikele [Molecular dynamics simulation of the establishment of thermodynamic equilibrium in Nickel], Matematicheskoe modelirovanie [Mathematical modeling], 2015, Vol. 27, No. 3, pp. 3-19.
25. Podryga V.O. Opredelenie makroparametrov real'nogo gaza metodami molekulyarnoy dinamiki [Definition of macro parameters of the real gas methods molecular dynamics], Matematicheskoe modelirovanie [Mathematical modeling], 2015, Vol. 27, No. 7, pp. 80-90.
26. Podryga V.O., Polyakov S.V., Zhakhovskiy V.V. Atomisticheskiy raschet perekhoda v termodinamicheskoe ravnovesie azota nad poverkhnost'yu nikelya [Atomistic calculation of the transition in the thermodynamic equilibrium of nitrogen over the surface of Nickel], Matematicheskoe modelirovanie [Mathematical modeling], 2015, Vol. 27, No. 7, pp. 91-96.
27. Podryga V.O., Polyakov S.V. Molekulyarno-dinamicheskiy raschet makroparametrov gaza v potoke i na granitse [Molecular-dynamic calculation of macro parameters of the gas in the stream and on the border], Preprinty IPM im. M.V. Keldysha [Preprint IPM im.
M.V. Keldysh], 2016, No. 80, 24 p.
28. Podryga V.O., Polyakov S.V. Parallel'naya realizatsiya mnogomasshtabnogo podkhoda dlya rascheta mikrotecheniy gaza [Parallel implementation of the multiscale approach for the calcu-lation of micromachine gas], Vychislitel'nye metody i programmirovanie [Computational methods and programming], 2016, Vol. 17, Issue 3, pp. 147-165.
29. Bondarenko A.A., Podryga V.O., Polyakov S.V., Yakobovskiy M.V. Otkazoustoychivaya realizatsiya metoda molekulyarnoy dinamiki na primere odnogo prilozheniya [Fault-tolerant implementation of a molecular dynamics method on the basis of an application], Parallel'nye vychislitel'nye tekhnologii (PaVT'2016): Trudy Mezhdunarodnoy nauchnoy konferentsii
(28 marta – 1 aprelya 2016 g., g. Arkhangel'sk) [Parallel computational technologies (PCT ' '2016): Proceedings of International scientific conference (March 28 – April 1, 2016, Arkhan-gelsk)]. Chelyabinsk: Izdatel'skiy tsentr YuUrGU, 2016, pp. 463-471.
30. ULFM-1.1 Release. Available at:
31. Bondarenko A.A., Yakobovskiy M.V. Obespechenie otkazoustoychivosti vysokoproizvoditel'nykh vychisleniy s pomoshch'yu lokal'nykh kontrol'nykh tochek [Fault tolerance for HPC using the local control points], Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya «Vychislitel'naya matematika i informatika» [Bulletin of the South Ural State University, series "Computational mathematics and Informatics"], 2014, Vol. 3, No. 3, pp. 20-36.

Comments are closed.