Authors A.R. Gaiduk, S.G. Kapustyan, A.A. Dyachenko, E.A. Plaksienko
Month, Year 01-02, 2017 @en
Index UDC 681.51:004.7; 623.746.4-519
Abstract In the report the control system for flight of an unmanned aerial vehicle (UAV), when it car-ries out required mission independently, is considered. This mission can consist in monitoring separate large forests and sea and ocean areas; icing, chemical and radiating conditions; to aerial photograph of the set sites of a terrestrial surface, patrolling of highways and frontiers, delivery of cargoes, etc. As onboard UAV there are no people its movement on the given route for performance of the mission assigned to it should be carried out in an autonomous mode. Thus the trajectory of UAV movement, as a rule, is rather complex curve. There fore the developed control system represents itself a three-channel complex for independent control of the UAV motion speed in longitudinal, cross-section directions and control of a course corner. All systems are created by the method of analytical design of systems with control on output and impacts (АDESYSCOI). They are characterized by the set direct of the quality performances, such as astatic orders, overshot, duration of transients and small oscillation. With the purpose of increase robustness the systems were projected as system with the coordinated poles. Distinctive feature of control systems is the opportunity operative, for example, under the preset program or on commands of the operator, to change of the dynamic properties of the UAV. Settlement ratio for independent realization of some maneuvers and UAV flight on the desired trajectory are received. Research of the properties of the designed control complex is carried out by computer simulation of the UAV flights in various modes. As a result of the computer simulation of the suggested systems complex it is established, that the control system allows the UAV to carry out in an independent mode all the maneuvers necessary for flight of the UAV at the constant height on the desired, enough complex trajectory with required performances. The submitted results can be used at creation of the group onboard control systems of the unmanned aerial vehicles various purpose and basing.

Download PDF

Keywords Control system, operative, change, dynamic, settlement ratio, UAV, autonomous mission, performances, maneuver and trajectory.
References 1. Sokolov V.B., Teryaev E.D. Bespilotnye letatel'nye apparaty: nekotorye voprosy razvitiya i primeneniya (obzor po materialam publikatsiy v Internete) [Unmanned aerial vehicle: some questions of development and application (the review on materials of publications in the Inter-net)], Mekhatronika, avtomatizatsiya, upravlenie [Mechatroniks, Automation, Control], 2008, No. 2, pp. 12-23.
2. Lozano R. Unmanned Aerial Vehicles. John Wiley, 2010.
3. Abrosimov V.K., Goncharenko V.I. Monitoring ob"ektov territoriy gruppoy intel-lektual'nykh bespilotnykh letatel'nykh apparatov [Monitoring of territory objects by fleet on the intellectual drones], Materialy Desyatoy Vserossiyskoy nauchno-prakticheskoy konferentsii «Perspektivnye sistemy i zadachi upravleniya» i Shestoy molodezhnoy shkoly-seminara «Upravlenie i obrabotka informatsii v tekhnichesikh sistemakh» [Materials of the Tenth All-Russia scientific-practical conference «Perspective systems and problems of control» and the Sixth youth a school-seminar «Control and processing of the information in technical systems»]: in 2 vol. Vol. I. Rostov-on-Don: Izd-vo YuFU, 2015, pp. 14-23.
4. Gayduk A.R., Kapustyan S.G., Shapovalov I.O. Reshenie transportnoy zadachi gruppoy robotov [Decision of a transport problem by group of robots], Materialy konferentsii «Upravlenie v tekhnichesikh, ergaticheskikh, organizatsionnykh i setevykh sistemakh (UTEOSS-2012)» [Materials of conference «Control in technical, argotic, organizational and network systems (UTAONWS-2012)»]. St. Petersburg: GNTs «OAO TsNII «Elektropribor», 2012, pp. 714-717.
5. Nazarova A.V., Ryzhkova T.P. Sistema upravleniya kollektivom robotov [Control system col-lective of robots], Mekhatronika, avtomatizatsiya, upravlenie [Mechatroniks, Automation, Control], 2014, No. 4, pp. 45-50.
6. Gayduk A.R. Upravlenie gruppoy BLA s ogranicheniem na upravlenie i peremennye sostoyaniya [Group BLA control with restriction on the control action and the state variable], Mekhatronika, avtomatizatsiya, upravlenie [Mechatroniks, Automation, Control], 2012, No. 2, pp. 52-57.
7. Pshikhopov V.Kh., Medvedev M.Yu. Sintez adaptivnykh sistem upravleniya letatel'nymi apparatami [Synthes of adaptive control systems for flying devices], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2010, No. 3 (104), pp. 187-196.
8. Canny J., Lin M. An opportunistic global path planner, Proc. of the IEEE International Conference on Robotic and Automation, 1990, pp. 1554-1559.
9. Sovremennye informatsionnye tekhnologii v zadachakh navigatsii i navedeniya bespilotnykh manevrennykh letatel'nykh apparatov [Modern information technologies in problems of naviga-tion and prompting of the unmanned aerial vehicle], ed. by M.N. Krasil'shchikova,
G.G. Srebryakova. Moscow: Fizmatlit, 2009.
10. Gayduk A. R., Kapustyan S.G. Kontseptual'nye aspekty gruppovogo primeneniya bespilotnykh letatel'nykh apparatov [Conceptual aspects of the group application of the unmanned aerial ve-hicle], Informatsionno-izmeritel'nye i upravlyayushchie sistemy [Information-measuring and control systems], 2012, No. 7, pp. 8-15.
11. Dogan A. Venkataramanan S. Nonlinear control for reconfiguration of Unmanned-Aerial-Vehicle Formation, J. of Guidance, control and dynamics, 2005, Vol. 28, No. 4, pp. 667-678.
12. Li X., Xie J., Cai M.Y., Xie M., Wang Z.K. Path planning for UAV based on improved heuristic A*algorithm, Proceedings of International Conference on Electronic Measurement & Instru-ments. Beijing. Aug 16-19. 2009, pp. 3488-3493.
13. Pshikhopov V.Kh. Upravlenie podvizhnymi ob"ektami v apriori neformalizovannykh sredakh [Control of mobile objects in a priori not formalized environments], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2008, No. 12 (104), pp. 6-9.
14. Anisimov V.N., Kabanov S.A. Upravlenie traektoriey dvizheniya letatel'nogo apparata pri oblete prepyatstviy s primeneniem metodov analiticheskoy mekhaniki [Control of a trajectory of the flying device movement at flight of obstacles with application of the analytical mechanics methods], Avtomatika i telemekhanika [Automatics and telemechanics], 2005, No. 3, pp. 3-10.
15. Abramov N.S., Khachumov M.V. Modelirovanie provodki po marshrutu bespilotnogo letatel'nogo apparata kak zadachi presledovaniya tseli [Modelling of posting on a route of the unmanned aerial vehicle, as tasks of the purpose prosecution], Aviakosmicheskoe priborostroenie [Aerospace instrument making], 2013, No. 9, pp. 9-22.
16. Wang Z.H., Zhang W.G., Shi J.P., Han Y. UAV route planning using multiobjective and colony system, Proceedings of IEEE Conference on Cybernetics and Intelligent System, Chengdu, China. 2008. Sep 21-24, pp. 797-800.
17. Knoebel N.B., McLain T.W. Adaptive quaternion control of a miniature tail sitter UAV, Ameri-can Control Conference. Westin Seattle Hotel. USA. 2008, pp. 2340-2345.
18. Gayduk A. R., Kapustyan S.G., D'yachenko A.A, Plaksienko E.A. Sistema avtonomnogo upravleniya manevrami BLA. Sistemnyy analiz, upravlenie i obrabotka informatsii [System of the autonomous control of UAV maneuvers], Trudy 7-go Mezhdunarodnogo seminara (Rostov-na-Donu, 6.10–12.10.2016 g.) [In works of 7-th International seminar «The system analysis, management and processing of the information» (Rostov-on-Don, 6.10–12.10.2016)], under common edition of R.A. Neyidorfa. Rostov-on-Don: DGTU, 2016, pp. 210-218.
19. Sintez algoritma ierarkhicheskogo upravleniya gruppoy BLA [Synthes of the hierarchical control algorithm of the UAV group], Informatsionno-izmeritel'nye i upravlyayushchie sistemy [Information-measuring and control systems], 2012, No. 8, pp. 61-67.
20. Mc Cormick B.W. Aerodynamics aeronautics and flight mechanics. John Wiley and Sons Inc, 1995.
21. Karshakov E.V. Osobennosti algoritmov upravleniya letatel'nym apparatom pri aeros"emke [Feature of control algorithms of the flying device at the aerial photograph], Problemy upravleniya [Problems of control], 2012, No. 3, pp. 71-76.

Comments are closed.