Article

Article title SCORE REQUIREMENTS TO THRUSTERS DRIVE OF THE AUTONOMOUS UNDERWATER VEHICLE
Authors V.V. Kostenko, D.N. Mikhailov, V.D. Nechaev, A.Yu. Tolstonogov
Section SECTION IV. DRIVES AND ENERGY SYSTEMS
Month, Year 01-02, 2017 @en
Index UDC 629.127
DOI
Abstract The article provides results of research aimed to support of the requirements for thruster motors of an AUV /Autonomous Underwater Vehicle/. This claim caused by maximum speed of the vehicle along the thruster direction, hydrodynamic characteristics of hull, variation of restoring force and geometry of propulsion system. Traditionally, the choice of the thruster motor determined by balance of hydrodynamic resistance of the vehicle at maximum speed with angle of attack equals to zero and the result thrust of the propulsion system. Generally, necessity of thrust resource reservation for restoring force compensation is not taken to account. Furthermore, the restoring force is changed by the water density, vehicle depth and disturbances of hydrodynamic moments caused by nonuniform flow around the hull. The aim of the article is precise definition of power and rotation frequency of thruster motors ensuring target vehicle velocity with hydrodynamic compensation of restoring force and stabilization of angle of attack. For that purpose mathematical model of stationary vehicle motion was designed. Based on the model, balance of stationary hydrodynamic forces and moments, restoring force and moments and propulsion thrust was found. Following the results of hydrodynamic simulation of vehicle hull and chosen propulsion geometry, required thrust and power of the most loaded thruster were found. The propeller specifications for optimum load of thruster motor at this point of thrust were found. The suggested method provides to determine not only main thrust and geometry requirements to newly designed propulsion system but reasonable demands to electric supply of the vehicle.

Download PDF

Keywords Autonomous underwater vehicle; steady-state mode movement; restoring forces; thruster forces; thrusters drive; hydrodynamic characteristics of AUV.
References 1. Allotta B., Pugi L., Bartolini F., Ridolfi A., Costanzi R., Monni N., Gelli J. Preliminary design and fast prototyping of an Autonomous Underwater Vehicle propulsion system, Proc. IMechE. Part M: Engineering for the Maritime Environment 20IX, 2013, Vol. XX(X), pp. 1-25.
2. Bradley A.M., Feezor M.D., Singh H., Sorrell F.Y. Power Systems for Autonomous Underwater Vehicles, IEEE Journal of oceanic Engineering, 2001, Vol. 26, No. 4, pp. 526-538.
3. Kostenko V.V., Mikhaylov D.N. Opredelenie parametrov energosilovoy ustanovki avto-nomnogo neobitaemogo podvodnogo apparata po zadannoy dal'nosti khoda [Determination of parameters AUV's power plant on the set of long cruising rang], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 3 (140), pp. 70-73.
4. Kostenko V.V., Mikhaylov D.N. Zavisimost' parametrov avtonomnosti podvodnogo apparata ot energoemkosti akkumulyatornoy batarei [The dependence of the parameters of Autonomous underwater vehicle from the consumption of the battery], Materialy 6-y nauchno-tekhnicheskoy konferentsii «Tekhnicheskie problemy osvoeniya mirovogo okeana», Vladivostok, 28 sentyabrya – 2 oktyabrya 2015 [Materials of the 6th scientific-technical conference "Technical problems of world ocean exploration", Vladivostok, September 28–October 2, 2015], pp. 97-100. ISBN 978-5-8044-1363-2.
5. Slizhevskiy N.B., Korol' Yu.M., Sokolik M.G. Gidrodinamicheskiy raschet samokhodnykh podvodnykh apparatov [Hydrodynamics calculation of the self-propelled submersibles]. Nikolaev: UGMTU, 2008, 93 p.
6. Ageev M.D., Kasatkin B.A., Kiselev L.V. i dr. Avtomaticheskie podvodnye apparaty [Unmanned Free Submersibles]. Leningrad: Sudostroenie, 1981, 224 p.
7. Ageev M.D., Kiselev L.V., Matvienko Yu.V. i dr. Avtonomnye podvodnye roboty: sistemy i tekhnologii [Autonomous underwater robots: systems and technologies], ed. by M.D. Ageeva; Institute of marine technology problems. Moscow: Nauka, 2005, 398 p.
8. Pantov E.N., Makhin M.N., Sheremetov B.B. Osnovy teorii dvizheniya podvodnykh apparatov [Foundations of the theory of motion of underwater vehicles]. Leningrad: Sudostroenie, 1973, 209 p.
9. Kiselev L.V., Medvedev A.V. O parametricheskikh sootnosheniyakh gidrodinamiki i ustoychivosti dvizheniya avtonomnogo podvodnogo robota [Parametric correlations of hydrodynamics and the stability of motion of an Autonomous underwater robot], Podvodnye issledovaniya i robototekhnika [Underwater researches and robotics], 2013, No. 1 (15), pp. 17-22.
10. Kiselev L.V., Medvedev A.V. Sravnitel'nyy analiz i optimizatsiya dinamicheskikh svoystv avtonomnykh podvodnykh robotov razlichnykh proektov i konfiguratsiy [Comparative analysis and optimization of dynamic properties of Autonomous underwater robots of various designs and configurations], Podvodnye issledovaniya i robototekhnika [Underwater researches and robotics], 2012, No. 1 (13), pp. 24-35.
11. Kiselev L.V., Bagnitskiy A.V. O tochnosti identifikatsii gidrodinamicheskikh kharakteristik avtonomnogo podvodnogo robota [About the accuracy of the identification of the hydrodynamic parameters of Autonomous underwater robot], Podvodnye issledovaniya i robototekhnika [Underwater researches and robotics], 2015, No. 1 (19), pp. 33-39.
12. Yoerger D.R., Slotine J.E. The Influence of Thruster Dynamics on Underwater Vehicle Behavior and Their Incorporation Into Control System Design, IEEE Journal of Oceanic Engineering, 1990, Vol. 15, No. 3, pp. 167-178.
13. Voytkunskiy Ya.I., Pershits R.Ya., Titov I.A. Spravochnik po teorii korablya. Sudovye dvizhiteli i upravlyaemost' [Guide to the theory of ship. Ship propellers and maneuverability]. Leningrad: Sudostroenie, 1973, 511 p.
14. Gornak V.E., Kostenko V.V. Raschetno-eksperimental'naya metodika opredeleniya ekspluatatsionnykh kharakteristik grebnogo elektroprivoda podvodnogo apparata [Calculation-experimental method of determining operational characteristics of the propeller drive underwater vehicle], Podvodnye issledovaniya i robototekhnika [Underwater researches and robotics], 2007, No. 2 (4), pp. 30-33.
15. Kostenko V.V., Mikhaylov D.N., Naydenko N.A. Apparatno-programmnye sredstva identifikatsii kharakteristik dvizhitelya podvodnogo apparata [Hardware and software identify the characteristics of propulsion underwater vehicle], Materialy vos'moy nauchno-prakticheskoy konferentsii «Perspektivnye sistemy i zadachi upravleniya» [Proceedings of the eighth scientific-practical conference "Advanced systems and control problems"]. Taganrog 2013, pp. 63-70.
16. Kostenko V.V., Mikhaylov D.N., Naydenko N.A. Opredelenie parametrov grebnogo elektroprivoda po rezul'tatam nagruzochnykh i basseynovykh ispytaniy [Determination of pa-rameters of propeller electric drive with the results of stress tests and basin], Materialy 5-y nauchno-tekhnicheskoy konferentsii «Tekhnicheskie problemy osvoeniya mirovogo okeana», Vladivostok, 30 sentyabrya – 4 oktyabrya 2013 [Materials of 5-th scientific and technical con-ference "Technical problems of world ocean exploration", Vladivostok: September 30 – October 4, 2013], pp. 389-395. ISBN 978-5-8044-1409-3.
17. Daidola J.C., Johnson F.M. Propeller Selection and Optimization Program. Manual for the Society of Naval Architects and Marine. NY.: Society of Naval Architects and Marine, 1992, 258 p.
18. Healey A.J., Rock S.M., Cody S., Miles D., Brown J.P. Toward an Improved Understanding of Thruster Dynamics for Underwater Vehicles, IEEE Journal of oceanic Engineering, 1995, Vol. 20, No. 4, pp. 354-361.
19. Kim J., Chung W.K. Accurate and practical thruster modeling for underwater vehicles, Journal of Ocean Engineering, 2006, Vol. 33, pp. 566-586.
20. Fossen T.I., Blanc M. Nonlinear Output Feedback Control of Underwater Vehicle Propellers Using Feedback Form Estimated Axial Flow Velosity, IEEE Journal of oceanic Engineering, 2000, Vol. 25, No. 2, pp. 241-255.

Comments are closed.