Article

Article title THE RESEARCH OF THE APPLICATION POSSIBILITIES OF TONES APPROXIMATION IN A TECHNICAL VISION FOR THE AUTONOMOUS NAVIGATION OBJECTS
Authors R.A. Neydorf, A.G. Aghajanyan
Section SECTION V. VISION SYSTEMS
Month, Year 01-02, 2017 @en
Index UDC 519.856;681.3
DOI
Abstract In the systems of «technical sight» (STS) for orientation used recognition of objects form. That is why in STS generally used monochrome images. Besides there are no need to use huge palette, because the problem is to define obvious changes in brightness. For this reason, the im-portant task of image (which received by STS’s photosensitive matrix) processing is converting them to a smaller palette. As a result, there is a problem of image approximation and the solution could simplifies the pattern recognition tasks. The report considers the problem of optimal monochrome multitone image approximation, which consists in reduction the palette size. The research primarily aim to questions of optimal approximation estimation criteria, influence of different deterministic strategies of definition of initial approximation palette on the effectiveness of evolutionarily-genetic algorithm, potential opportunities to increase the speed of the algorithm and optimal palette size of approximated image, which will be enough for solving different navigation tasks. The research allowed to find the answer for all questions and to make a choice of most perspective model of the algorithm. Also one of the important result of the research is the idea of modified multi-step scheme of evolutionarily-genetic algorithm, which will increase the algorithm accuracy and speed.

Download PDF

Keywords Image approximation; evolutionarily-genetic algorithm; palette optimization; chromosome; technical sight; estimation criteria.
References 1. Neydorf R.A., Polyakh V.V., Chernogorov I.V., Yarakhmedov O.T. Optimizatsiya marshrutov v srede s prepyatstviyami evristicheskimi algoritmami [Optimization of routes in an environment with obstacles heuristic algorithms], Sbornik materialov XI Vserossiyskoy nauchno-prakticheskoy konferentsii «Perspektivnye sistemy i zadachi upravleniya» [the Collection of materials of XI all-Russian scientific-practical conference "advanced systems and control problems"], 2016, Vol. 2, pp. 146-156. Available at: http://psct.ru/files/TOM_II.pdf (Accessed 21 November 2016).
2. Neydorf R.A., Polyakh V.V., Chernogorov I.V., Yarakhmedov O.T. Evristicheskie algoritmy v zadachakh prokladki marshrutov v srede s prepyatstviyami [Heuristic algorithms for the task of routing in an environment with obstacles], Materialy Vserossiyskoy NTK s mezhdunarodnym uchastiem «Komp'yuternye i informatsionnye tekhnologii v nauke, inzhenerii i upravlenii» KomTekh-2016 [proceedings of all-Russian STC with international partic-ipation "Computer and information technologies in science, engineering and man-agement" Komtekh-2016], 2016, pp. 53-59.
3. Neydorf R.A., Polyakh V.V., Chernogorov I.V., Yarakhmedov O.T. Issledovanie evristicheskikh algoritmov v zadachakh prokladki i optimizatsiya marshrutov v srede s prepyatstviyami [The study of heuristic algorithms in the tasks strip, and optimization of routes in an envi-ronment with obstacles], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engi-neering Sciences], 2016, No. 3 (176), pp. 127-143.
4. Chernogorov I.V. Poisk kratchayshego puti v srede so staticheskimi prepyatstviyami metodom poiskovykh chastits [Finding the shortest path in an environment with static obstacles by the method of search particles], Materialy Vserossiyskoy NTK s mezhdunarodnym uchastiem «Komp'yuternye i informatsionnye tekhnologii v nauke, inzhenerii i upravlenii» KomTekh-2016 [Materials of all-Russian STC with international participation "Com-puter and information technologies in science, engineering and management" Komtekh-2016], 2016, pp. 38-44.
5. Tuan Z.G. Algoritmy uskorennoy obrabotki izobrazheniy prepyatstviy v sisteme tekhni-cheskogo zreniya robota [Algorithms for accelerated image processing the obstacles in the system of technical vision of robot], Inzhenernyy vestnik Dona [Engineering journal of don], 2015. Available at: http://ivdon.ru/ up-loads/article/pdf/IVD_123_Nguyen_ Tu-an_Dung.pdf_ae9adb5979.pdf.
6. Agadzhanyan A.G., Neydorf R.A. Optimizatsionno-poiskovaya approksimatsiya monokhromnykh mul'titonovykh izobrazheniy evolyutsionno-geneticheskim algoritmom [Op-timization-search approximation monochrome-tion multitonal images evolutionary genetic algorithm], Materialy Vserossiyskoy NTK s mezhdunarodnym uchastiem «Komp'yuternye i informatsionnye tekhnologii v nauke, inzhenerii i upravlenii» KomTekh-2016 [proceedings of all-Russian STC with international participation "Computer and information technologies in science, engineering and management" Komtekh-2016], 2016, pp. 108-112.
7. Agadzhanyan A.G., Neydorf R.A. Optimizatsiya approksimatsii monokhromnykh mul'titonovykh izobrazheniy evolyutsionno-geneticheskim algoritmom [Optimization approximation monochrome multico-new images evolutionary genetic algorithm], Omega Science, 2016, No. 108, pp. 11-17. Available at: http://os-russia.com/SBORNIKI/KON-108-3.pdf.
8. Neydorf R.A., Aghajanyan A.G., Vucinic D. Monochrome Multitone Image Approximation on Lowered Dimension Palette with Sub-optimization Method based on Genetic Algorithm, ACE-X 2016. Split (Croatia), 2016.
9. Neydorf R.A., Aghajanyan A.G. and Vucinic D. Monochrome multitone image approximation with low-dimensional palette, 2016 IEEE East-West Design & Test Symposium (EWDTS), Ye-revan, 2016. Doi: 10.1109/EWDTS.2016.7807743.
10. Neydorf R., Aghajanyan A., Vucinic D. Monochrome Multitone Image Approximation with Low-dimensional Palette, Proceedings of the IEEE East-West Design & Test Symposium (EWDTS’ 2016), EWDTS-2016. Yerevan, 2016, Copyright © 2016 by The Institute of Electrical and Electronics Engineers, pp. 319-322.
11. Derevyankina A.A. Strukturno-parametricheskaya optimizatsiya polutonovykh izobrazheniy metodom S-approksimatsii v zadachakh raspoznavaniya obrazov [Structural-parametric op-timization of half-tone images by the method of S-approximation in pattern recogni-tion problems], Vestnik Donskogo gos. tekhn. un-ta [Vestnik of don state technical Uni-versity], 2009, Vol. 9. Spets. vyp.: Tekhnicheskie nauki [Special issue: engineering science], Part 2. Available at: http://elibrary.ru/ item.asp?id=14931765.
12. Kudrina M.A. Kliment'ev K.E. K 888 Komp'yuternaya grafika: ucheb. [K 888 to Computer graphics: proc.]. Samara: Izd-vo Samar. gos. aerokosm. un-ta, 2013, 138 p.
13. Derevyankina A.A., Neydorf R.A. Reshenie zadach raspoznavaniya metodom royashchikhsya chastits s deleniem roya [The decision of tasks of recognition by the method of swarm-ing particles with division of the plenty], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2010, No. 7 (108), pp. 21-28.
14. Derevyankina A.A. Sravnitel'noe issledovanie inzhenerno-evristicheskikh podkhodov k s-approksimatsii polutonovykh izobrazheniy [A comparative study of engineering and heu-ristic approaches to s-approximations of grayscale images], Trudy I Mezhdunarodnogo seminara pod obshch. red. R.A. Neydorfa [Proceedings I International seminar under the General editorship of R. A. Neudorf]. Rostov-on-Don: Izd. tsentr Donsk. gos. tekhn. un-ta, 2010. Available at: http://ntb.donstu.ru/files/conference/articles_sacip_2010.pdf.
15. Derevyankina A.A. Avtomatizatsiya issledovaniya izobrazheniy metodom s-approksimatsii [Automation of imaging studies by the method of s-approximation], Matematicheskie metody v tekhnike i tekhnologiyakh – MMTT – 23: Sb. tr. KhKhIII Mezhdunar. nauch. konf. [Proceedings of the XXIII International scientific conference]: in 12 vol. Vol. 6. ed. by V.S. Balakireva. Saratov: Sarat. gos. tekhn. un-t, 2010.
16. Sklyarenko A.A., Derevyankina A.A., Neydorf R.A. Parametricheskaya optimizatsiya obobshchennogo algoritma S-approksimatsii mul'titonovykh izobrazheniy [Parametric opti-mization of the generalized algorithm S-approximation multitonal images], Trudy III Mezhdunarodnogo seminara [Proceedings of III international seminar], ed. by R.A. Neydorfa. Rostov-on-Don: Izd. tsentr Donsk. gos. tekhn. un-ta, 2012. Available at: http://ntb.donstu.ru/files/conference/Articles_sacip_2012(1).pdf.
17. Sklyarenko A.A., Derevyankina A.A., Neydorf R.A. Razrabotka universal'nogo algoritma
S – approksimatsii polutonovogo izobrazheniya [Development of a universal algorithm
S – approximations of grayscale images], Innovatsiya, ekologiya i resursosberegayushchie tekhnologii na predpriyatiyakh mashinostroeniya, aviastroeniya, transporta i sel'skogo khozyaystva: Trudy X Mezhdunarodnogo nauchno-tekhnicheskogo foruma, 2012 [Innovation, ecology and resource-saving technologies at enterprises of machine building, aircraft industry, transport and agriculture: proceedings of the X International scientific and technical forum, 2012].
18. Sklyarenko A.A. Vybor algoritma S-approksimatsii dlya polutonovogo izobrazheniya [The choice of algorithm S-approximation for halftone image], Innovatsiya, ekologiya i resursosberegayushchie tekhnologii na predpriyatiyakh mashinostroeniya, aviastroeniya, transporta i sel'skogo khozyaystva: Trudy X Mezhdunarodnogo nauchno-tekhnicheskogo foruma, 2012 [Innovation, ecology and resource-saving technologies at enterprises of machine building, aircraft industry, transport and agriculture: proceedings of the X International scientific and technical forum, 2012].
19. Agadzhanyan A.G., Neydorf R.A. Parametricheskaya nastroyka evolyutsionno-geneticheskogo algoritma na reshenie zadach kontinual'noy optimizatsii [Setting of parameters of evolu-tionary-genetic algorithm for task solving continuous optimization], Problemy upravleniya, obrabotki i peredachi informatsii (UOPI-2015) [Problems of management, processing and transmission of information (WOPI-2015)]. Saratov: Izd. dom «Rayt-Ekspo», 2015, Vol. 1, pp. 191-196.
20. Agadzhanyan A.G. Eksperimental'noe issledovanie effektivnosti primeneniya klassicheskogo evolyutsionno-geneticheskogo algoritma v kontinual'nykh zadachakh na primere issledovaniya funktsii Rastrigina [Experimental study of efficiency of application of classical evolu-tionary genetic algorithm in continuous tasks on the example of Rastrigin function], Sbornik statey DGTU [Collection of articles DSTU]. Rostov-on-Don: DGTU, 2015.
21. Agadzhanyan A.G., Neydorf R.A. Issledovanie effektivnosti evolyutsionnogo podkhoda pri reshenii zadach kontinual'noy optimizatsii [Study of the effectiveness of the evolutionary approach in solving problems continuous optimization], Omega Science, 2015, No. 63, pp. 9-11.

Comments are closed.