Article

Article title METHODS FOR SOLVING THE GLOBAL CONTROL PROBLEMS FOR DISTRIBUTED HIERARCHICAL SYSTEMS WITH THE INTERVAL UNCERTAINTY
Authors S.V. Frolov, T.A. Frolova
Section SECTION IV. ELECTRONICS AND CONTROL
Month, Year 04, 2017 @en
Index UDC 519.711
DOI
Abstract Finding the characteristics of distribution and membership functions is difficult in most practical cases for uncertain parameters of technological processes. Usually only the intervals of uncertain parameters values are known. A complex chemical-technological process together with a control system is considered as a complex chemical-technological system. The first or the lower level of control of the hierarchical structure is composed of machines or machines in conjunction with local control systems based on programmable microcontrollers. Elements of the lower level of the hierarchy are coupled according to the technological principle into blocks, which together with the block management system form the second level of the hierarchy. The third or upper level of the hierarchy is the set of the elements of the second level and the control system. Control of the second-level sub-processes of the hierarchy is carried out by coordinating stations that receive coordinating signals from the third-level control system, information signals from the lower level, and provide control signals to the lower level of the hierarchy. The coordinating station of the top controls the systems of the second level. The aim of the study is the formulation of theoretical foundations for the development of the control system for complicated chemical processes with interval parameter uncertainties. Global control problems are formulated for a three-level hierarchical system with interval uncertainty of parameters: the problem of obtaining satisfactory solutions and the optimization problem. The problem of obtaining satisfactory solutions reduces to the search control in which for all values of uncertain parameters from the specified intervals the technological requirements are fulfilled. The global optimization problem is supplemented for achieving optimal value criterion under uncertainty. The principles are formulated; methods and algorithms are proposed for decomposition of the global control problems, which allow reducing a global control problem to a set of control problems, which could be solved in parallel for technological processes with the interval uncertainty of parameters. The presented approach makes it possible to apply the modularity principle for each task at the development stage. This principle is that each of the tasks can be formalized, set up and algorithmized by an independent developer who does not need to get acquainted with the content of other tasks. The modularity principle allows modifying a task without causing any consequences in other tasks. The results are the theoretical basis for the design of new and modernization of existing control systems for production, which is characterized by a plurality of stages, energy and materials consumption, the presence of a large number of parameters and disturbances.

Download PDF

Keywords Chemical-technological process; interval uncertainty; hierarchical control system; decom-position of control problem; optimization problem.
References 1. Ostrovskiy G.M., Ziyatdinov N.N., Lapteva T.V. Optimizatsiya tekhnicheskikh sistem [Optimi-zation of technical systems]. Moscow: KNORUS, 2012, 432 p.
2. Frolov S.V. Razvitie otechestvennykh sistem promyshlennoy avtomatizatsii [The development of domestic industrial automation systems], Avtomatizatsiya i proizvodstvo [Automation and manufacturing], 2001, No. 2, pp. 22-25.
3. Shil'yak D. Detsentralizovannoe upravlenie slozhnymi sistemami [Decentralized control of complex systems]. Moscow: Mir, 1994, 576 p.
4. Kholodnov V.A., Lebedeva M.Yu. Priblizhennyy metod optimizatsii khimiko-tekhnologicheskikh sistem pri interval'noy parametricheskoy neopredelennosti [Approximate method for optimization of chemical-technological systems with interval parametric uncertainties], Izvestiya Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta (tekhnicheskogo universiteta) [Proceedings of Saint-Petersburg state technological Institute (technical University)], 2016, No. 33 (59), pp. 97-100.
5. Ostrovskiy G.M., Lapteva T.V., Ziyatdinov N.N. Proektirovanie optimal'nykh khimiko-tekhnologicheskikh sistem v usloviyakh neopredelennosti [Design of optimal chemical-technological systems in conditions of uncertainty], Teoreticheskie osnovy khimicheskoy tekhnologii [Theoretical foundations of chemical engineering], 2014, Vol. 48, No. 5, pp. 527-537.
6. Pegat A. Nechetkoe modelirovanie i upravlenie [Fuzzy modeling and control]. Moscow: BINOM. Laboratoriya znaniy, 2013, 798 p.
7. Frolova T.A., Frolov S.V., Tulyakov D.S. Reshenie interval'nykh matematicheskikh modeley tekhnologicheskikh protsessov [The solution of interval mathematical models of technological processes], Elektronnoe nauchno-tekhnicheskoe izdanie «Nauka i obrazovanie» [Electronic scientific and technical periodical "Science and education"], 2012, No. 09, pp. 343-360. Avail-able at: http://technomag.bmstu.ru/doc/454499.html (accessed 17 February 2017).
8. Rastrigin L.A. Sovremennye printsipy upravleniya slozhnymi ob"ektami [Modern principles of management of complex objects]. Moscow: Sov. radio, 1980, 232 p.
9. Saymon G. Nauki ob iskusstvennom [Science of artificial]: translation from English. 2 nd ed. Moscow: Editorial URSS, 2004, 144 p.
10. Kafarov V.V., Meshalkin V.P. Analiz i sintez khimiko-tekhnologicheskikh system [Analysis and synthesis of chemical-technological systems]. Moscow: Khimiya, 1991, 432 p.
11. Kafarov V.V., Dorokhov I.N. Sistemnyy analiz protsessov khimicheskoy tekhnologii. Osnovy ctrategii [System analysis of chemical engineering processes. The basics of the strategy]. Mos-cow: Nauka, 1976, 499 p.
12. Kharazov V.G. Integrirovannye sistemy upravleniya tekhnologicheskimi protsessami: uchebnoe posobie dlya vuzov [Integrated systems of control of technological processes: textbook for universities]. St. Petersburg: Professiya, 2013, 655 p.
13. Kharazov V.G. Intellektual'nye pribory i sistemy upravleniya [Intelligent devices and control systems], Izvestiya Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta (tekhnicheskogo universiteta) [Bulletin of Saint-Petersburg state technological Institute (technical University)], 2014, No. 26 (52), pp. 92-94.
14. Kharazov V.G. Problemy i puti razvitiya integrirovannykh ASU TP [Problems and ways of development of an integrated process control system], Izvestiya Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta (tekhnicheskogo universiteta) [Bulletin of Saint-Petersburg state technological Institute (technical University)], 2013, No. 18 (44), pp. 089-092.
15. Shenbrot I.M., Antropov M.V., Davidenko K.Ya. Raspredelennye ASU tekhnologicheskimi protsessami [Distributed automatic control system of technological processes]. Moscow: Energoatomizdat, 1985, 240 p.
16. Shenbrot I.M. Raspredelennye ASU TP - ASU novogo klassa [Distributed - ASU new class], Pribory i sistemy upravleniya [Devices and control systems], 1983, No. 12, pp. 5-6.
17. Shenbrot I.M., Aliev V.M. Proektirovanie vychislitel'nykh sistem raspredelennykh ASU TP [De-sign of computer systems distributed control system]. Moscow: Energoatomizdat, 1989, 88 p.
18. Shishov O.V. Programmiruemye kontrollery v sistemakh promyshlennoy avtomatizatsii: uchebnik [Programmable controllers in industrial automation systems: tutorial]. Moscow: INFRA-M, 2017, 365 p.
19. Mesarovich M., Mako D., Takakhara Ya. Teoriya ierarkhicheskikh mnogourovnevykh system [Theory of hierarchical multilevel systems]. Moscow: Mir, 1973, 344 p.
20. Mesarovich M., Takakhara Ya. Obshchaya teoriya sistem: matematicheskie osnovy [General systems theory: mathematical foundations]. Moscow: Mir, 1978, 311 p.
21. Khimmel'blau D. Prikladnoe nelineynoe programmirovanie [Applied nonlinear programming]. Moscow: Mir, 1975, 534 p.
22. Yodan E. Strukturnoe proektirovanie i konstruirovanie program [Structural design and con-struction programs]. Moscow: Mir, 1979, 415 p.

Comments are closed.