Authors A.V. Pomazanov, S.S. Shibaev, D.P. Volik
Month, Year 05, 2017 @en
Index UDC 621.396
Abstract Space communication systems are the integral part of modern informational systems, in-cluding low rate (telephone and paging) as well as high rate (internet, high resolution TV) services. As a result of omni-increasing needs in quality, rates and capacity of transmitted information, space systems draw a large part of SHF range. These systems consist of shuttle group near the Earth orbit and surface stations. One of the tasks being solved at development is the analysis of stability of last-named to electromagnetic influences of different kinds. For solving this task the collaborators of “Nanophotonics and optoelectronics” laboratory of Southern federal university have developed and examined the prototype of surface station of space communication system using “radio over fiber” technology. Designed prototype consists of two blocks – base station and transmitting device, connected to each other with singlemode fiber optic cable. Between them occurs the SHF signals transmission in the range of 1500-2500 MHz. The use of fiberoptic link for modules connection is caused with its high noise immunity. The information is transmitted in the form of two level phase code manipulation, preliminarily differentially coded. Transmitting device contains terminal cascades of amplification and element of power interferences protection. Working modes control and system parameters settings are implemented with means of personal computer, linked to base station. Given are the results of prototype sensitivity experimental examination, which have shown the device compatibility for holding full-sized testing.

Download PDF

Keywords Radiooptic link; radiolocation; space communication; phase modulation; quadrature detector.
References 1. Livanov I. Terminaly sputnikovoy svyazi millimetrovogo diapazona VVS SShA [Satellite terminals millimeter range U.S. air force], Zarubezhnoe voennoe obozrenie [Foreign military review], 2013, No. 12, pp. 63-68.
2. Mikhaylov V.F., Moshkin V.I., Bragin I.V. Kosmicheskie sistemy svyazi: ucheb. Posobie [Space communications systems: textbook]. Saint-Petersburg: GUAP, 2006б 174 p.
3. Dyatlov A.P. Sistemy sputnikovoy svyazi s podvizhnymi ob"ektami: ucheb. posobie [Satellite communication system with mobile objects: a tutorial]. Part 1. Taganrog: TRTU, 2004, 95 p.
4. Makarenko S.I., Sapozhnikov V.I., Zakharenko G.I., Fedoseev V.E. Sistemy svyazi: ucheb. posobie dlya studentov (kursantov) vuzov [Communication systems: textbook for students (cadets) of higher education institutions], under the general editorship of Makarenko S.I. Vo-ronezh: izdanie VAIU, 2011. 285 p.
5. Vasil'ev K.K., Glushkov V.A., Dormidontov A.V., Nesterenko A.G. Teoriya elektricheskoy svyazi: ucheb. posobie [Theory of telecommunications: the textbook], under the general edi-torship of Vasil'eva K.K. Ul'yanovsk: UlGTU, 2008, 452 p.
6. Svitov R. Sostoyanie i perspektivy razvitiya amerikanskikh voennykh sistem sputnikovoy svyazi [Status and prospects of the development of U.S. military satellite communication systems], Zarubezhnoe voennoe obozrenie [Foreign military review], 2013, No. 7, pp. 8-19.
7. Denisyuk I. Yu., Asnis L.N., Fokina M.I., Sobeshchuk N.O. Primenenie elementov fotoniki v spetsial'noy apparature [Use of photonics in special equipment]. – Saint-Petersburg: Izd-vo SPbGUITMO, 2008, 122 p.
8. Ustroystva SVCh i antenny. Proektirovanie fazirovannykh antennykh reshetok: ucheb. posobie dlya vuzov [Microwave device and antenna. Design of phased array antennas: proc. the allowance for high schools], under the ed. Voskresenskogo D.I. 4th ed. Moscow: Radiotekhnika, 2012, 744 p.
9. Tsukanov V.A., Yakovlev M.Ya. Volokonno-opticheskaya tekhnika. Prakticheskoe rukovodstvo [Fiber-optic technology. A practical guide]. Moscow: Infra-Inzheneriya, 2014, 304 p.
10. Available at:
11. Available at:
12. Available at:
13. Available at:
14. Available at:
15. Available at:
16. Available at:
17. Pomazanov A.V., Shibaev S.S., Volik D.P. Osobennosti izmereniya fazy radiosignala posredstvom kvadraturnogo detektora AD8347 [The features of radiosignal phase measurement by means of quadrature demodulator AD8347], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2016, No. 9 (182), pp. 93-102.
18. Shibaev S.S., Pomazanov A.V., Rozdobud'ko V.V. Akustoopticheskie izmeriteli parametrov radiosignalov: monografiya [Acousto-optical measuring parameters of radio signals: mono-graph], Rostov-on-Don: Izd-vo YuFU, 2014, 233 p.
19. Volik D.P., Shibaev S.S., Pomazanov A.V. Printsipy postroeniya i realizatsiya akustoopticheskikh izmeriteley parametrov radiosignalov [Radiosignals parameters acoustooptic measurers implementation principles], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 11 (148), pp. 175-182.
20. Shibaev S.S., Novikov V.M., Volik D.P., Rozdobud'ko V.V. Malogabaritnyy akustoopticheskiy izmeritel' parametrov radiosignalov [Compact acousto-optic measuring parameters of radio signals], Voprosy spetsial'noy radioelektroniki. Obshchie voprosy radioelektroniki [Questions of special radio electronics. General questions of radio electronics]. Moscow-Taganrog: TNIIS, 2009, Issue 1, pp. 83-90.
21. Shibaev S.S., Volik D.P., Rozdobud'ko V.V. Akustoopticheskiy priemnik-chastotomer na osnove deflektora s protivofaznym vozbuzhdeniem ul'trazvuka [Acoustooptic receiver-cymometer on the base of deflector with anti-phase excitation of ultrasound], Izvestiya vuzov Rossii. Radioelektronika [Izvestia vuzov Rossii. Electronics], 2008, Issue 4, pp. 32-38.

Comments are closed.