Authors A.I. Panychev, A.A. Vaganova
Month, Year 05, 2017 @en
Index UDC 621.396
Abstract The paper is devoted to developing a way of approximate account of radiowave diffraction, which allows to determine the intensity distribution of the diffraction field indoors. Proposed analytic and computational methods for accelerating the calculation of the diffraction coefficients on an infinite wedge make it possible to carry out an approximate calculation of the diffraction field with a reduction in computational costs in problems of multipath propagation in enclosed spaces. Simplification in the analytic part consists in using the asymptotics of the Fresnel integral for the values of the argument, which are characteristic for the geometric dimensions of the room. Simplification in the computational part consists in preliminarily cutting off the region where the diffraction coefficients have a magnitude of the first and smaller order of smallness. The shown results allow to determine the dependence of the direction of the diffraction maximums on the angle of incidence, which make it possible to take into account the diffraction rays only in the narrow angular sectors where the diffraction makes an appreciable contribution to the overall intensity of the electromagnetic field. It is found that areas with a clearly low level of the diffraction field intensity occupy a significant part of the room, and excluding them from consideration makes it possible to reduce the computational resources substantially in the calculation of the coverage area. This is proved by the field intensity calculations, which show that using the proposed simplifications allows to decrease the calculation time in 80 times. The coverage area is simulated with the help of all the developed approaches of approximate calculation of the diffraction coefficients. It is found that the results of exact and approximate calculations of field intensity in the areas with the highest level of the diffraction rays are in good agreement. The obtained results make it possible to conclude that the use of the proposed approach of approximate calculation is an appropriate compromise between the accuracy of the obtained result and the required costs of computational resources.

Download PDF

Keywords Diffraction on a wedge; diffraction coefficients; wireless local area network; WLAN; inten-sity; Fresnel integral; indoor propagation; ray tracing; coverage area; multibeam propagation.
References 1. Vesnik M.V. Determinirovannaya teoriya rasprostraneniya radiovoln v usloviyakh gorodskoy zastroyki [The deterministic theory of radio wave propagation in urban areas], Trudy Mezhdunar. nauchn. konf. «Izluchenie i rasseyanie elektromagnitnykh voln – IREMV-2015» [Proceedings of International scientific conference "Radiation and scattering of electromagnetic waves – IRANG-2015"]. Rostov-on-Don: Izd-vo YuFU, 2015, pp. 378-383.
2. Dimitriou A.G., Bletsas A., Bessis N., Polycarpou A.C., Sahalos G.N. Theoretical Findings and Measurements on Planning a UHF RFID System Inside a Room, Radioengineering, June 2011, Vol. 20, No. 2, pp. 387-397.
3. Lay Z., De La Roche G., Bessis N., Kuonen P., Clapworthe G., Zhou D., Zhang G. Statistical Intelligent Ray Launching Algorithm for Indoor Scenarios, Radioengineering, June 2011, Vol. 20, No. 2, pp. 398-408.
4. Maltsev A., Maslennikov R., Lomayev A., Sevastyanov A., Khoryaev A. Statistical Channel Model for 60 GHz WLAN Systems in Conference Room Environment, Radioengineering, June 2011, Vol. 20, No. 2, pp. 409-422.
5. Permyakov V.A., Zheksenov M.A. Metody rascheta rasprostraneniya radiovoln v gorode (obzor) [Methods of calculation of radio wave propagation in the city (review)], Trudy Mezhdunar. nauchn. konf. «Izluchenie i rasseyanie elektromagnitnykh voln – IREMV-2009» [Proceedings of International scientific conference "Radiation and scattering of electromagnetic waves – IRANG-2009"]. Taganrog: Izd-vo TTI YuFU, 2009, pp. 36-40.
6. Barabashov B.G., Drogan Yu.V., Pelevin O.Yu. Raschet mnogoluchevoy struktury polya UKV v gorode [The calculation of the multipath structure of the field of VHF in the city], Izvestiya vuzov. Severo-Kavkazskiy region. Estestvennye nauki [University News North-Caucasian Re-gion. Natural Sciences Series], 2009, No. 4, pp. 42-44.
7. Strel'nitskiy A.A., Strel'nitskiy A.E., Tsopa A.I., Shokalo V.M. Teoriya i praktika postroeniya radiokanalov lokal'nykh besprovodnykh setey s zadannym kachestvom peredachi informatsii [The theory and practice of constructing radio channels, wireless local networks with a given quality of information transfer],18th Int. Crimean Conference «Microwave & Telecommunication Technology» (CriMiCo’2008), 8-12 september 2008, Sevastopol, Crimea, Ukraine, pp. 3-9.
8. Avdeev V.B., Katrusha A.N. Raschet i analiz mnogokomponentnogo sostava polya radiovoln na trassakh rasprostraneniya vnutri zdaniy [Calculation and analysis of multicomponent com-position field of the radio waves on the slopes of the distribution inside the buildings], Antenny [Antennas], 2007, Issue 4 (119), pp. 6-11.
9. Madej P. 3D Wireless Networks Simulator – Visualization of Radio Frequency Propagation for WLANs, Dissertation. Univ. of Dublin, Trinity College, 2006.
10. Bankov S.E., Kurushin A.A. Raschet i modelirovanie rasprostraneniya radiovoln v gorodskoy srede i peresechennoy mestnosti s pomoshch'yu programmy Wireless InSite [The calculation and modeling of radiowave propagation in the urban environment and terrain, using Wireless InSite], EDA Express, 2004, No. 9, pp. 35-39.
11. Gureev A.V., Kustov V.A. Volnovodnaya model' besprovodnykh kanalov svyazi vnutri zdaniy [Waveguide model of wireless communication channels inside buildings], Elektronnyy zhurnal «Issledovano v Rossii» [Electronic journal "Investigated in Russia"], 2002, No. 2, pp. 1519-1536.
12. O’Brien W., Kenny E., Culler P. An efficient implementation of a three-dimensional microcell propagation tool for indoor and outdoor urban environments, IEEE Trans. Veh. Tech., 2000, Vol. 49, No. 2, pp. 622-630.
13. Chung H.K. and Bertony H.L. Rang-dependent path-loss model in residential areas for the VHF and UHF bands, IEEE Trans. on Anten. and Propag., 2002, Vol. 50, No. 1, pp. 1-11.
14. Torres R.P. a.o. CINDOOR: An Engineering Tool for Planning and Design of Wireless System in Enclosed Spaces, Antennas and Propagation Magazine, 1999, Vol. 41, No. 4, pp. 11-21.
15. Ponomarev G.A., Kulikov A.M., Tel'pukhovskiy E.D. Rasprostranenie UKV v gorode [The distribution of VHF in the city]. Tomsk: MP «Rasko», 1991.
16. Grishchenko S.G., Kisel N.N. Research of the Underlying Surface Model, 25th Int. Crimean Conference «Microwave & Telecommunication Technology» (CriMiCo’2015), 2015, 6-12 September. Sevastopol, Crimea, Vol. 1, pp. 1126-1127.
17. Grishchenko S.G., Kisel N.N. Microwave Model of a Scatterer, located on the underlying sur-face, 25th Int. Crimean Conference «Microwave & Telecommunication Technology» (CriMiCo’2015), 2015, 6-12 September. Sevastopol, Crimea, Vol. 1, pp. 1198-1199.
18. Grishchenko S.G., Kisel' N.N, Vaganova A.A. Chislennyy analiz mnogosloynoy modeli zemnoy poverkhnosti [Numerical analysis of earth surface multilayer model], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 11 (148), pp. 105-116.
19. Grishchenko S.G., Kisel' N.N, Vaganova A.A. Rasseyanie elektromagnitnykh voln telom vrashcheniya, raspolozhennym na mnogosloynom poluprostranstve [Scattering of electromagnetic waves by body of revolution located on multilayered half-space], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 11 (148), pp. 141-150.
20. Panychev A.I. Algoritm trekhmernoy trassirovki radiovoln lokal'noy besprovodnoy seti [The algorithm of three-dimensional trace radio waves wireless lan], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 11 (136), pp. 31-41.
21. Panychev A.I. Trekhmernoe modelirovanie zony radiopokrytiya WLAN v pomeshchenii [Three-dimensional modeling of the zone of radio coverage of WLAN in the room], Tekhnika radiosvyazi [Radio frequency technician], 2014, Issue 2 (22), pp. 23-32.
22. Panychev A.I., Dubinskaya I.V. Sintez luchevoy traektorii proniknoveniya signalov WLAN v smezhnye pomeshcheniya [Synthesis of ray trajectory penetration WLAN signals in adjacent rooms], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 5 (142), pp. 116-122.
23. Panychev A.I., Vaganova A.A. Three-dimensional Tracing of WLAN Signals Between Rooms, 25th Int. Crimean Conference «Microwave & Telecommunication Technology» (CriMiCo’2015), 2015, 6-12 September. Sevastopol, Crimea, Vol. 1, pp. 211-212.
24. Panychev A.I. Vaganova A.A. Analiz mnogoluchevoy struktury elektromagnitnogo polya v pomeshchenii s gruppoy prepyatstviy [Analysis of the electromagnetic field multiray structure in the room with a group of obstacles], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2016, No. 3 (176), pp. 53-65.
25. Panychev A.I., Vaganova A.A. Modeling of Ray Refraction of WLAN Signals on the Structural Elements of the Building, 2016 International Siberian Conference on Control and Communi-cations (SIBCON). Proceedings. Russia, Moscow, May 12−14, 2016. IEEE Catalog Number: CFP16794-CDR. С. 7491718.
26. Panychev A.I., Vaganova A.A. Otsenka ob"emnogo raspredeleniya intensivnosti pronikayushchikh v pomeshchenie signalov WLAN [Evaluation of spatial distribution of in-tensity penetrating to the room signals WLAN], 26th Int. Crimean Conference «Microwave & Telecommunication Technology» (CriMiCo’2016), 2016, 4-10 September, Sevastopol, Crimea, Vol. 3, pp. 437-444.
27. Milyutin E.R., Vasilenko G.O., Sivers M.A., Volkov A.N., Pevtsov N.V. Metody rascheta polya v sistemakh svyazi detsimetrovogo diapazona [Methods of calculation of fields in communication systems UHF], Saint Petersburg: Triada, 2003, 159 p.
28. Borovikov V.A., Kinber B.E. Geometricheskaya teoriya difraktsii [Geometric theory of diffrac-tion]. Moscow: Svyaz', 1978, 248 p.
29. Fok V.A. Problemy diffraktsii i rasprostraneniya elektromagnitnykh voln [Problems of diffraction and propagation of electromagnetic waves]. Moscow: Izd-vo «Sovetskoe radio», 1970, 520 p.
30. King R., Tay-Tszun' U. Rasseyanie i difraktsiya elektromagnitnykh voln [Scattering and dif-fraction of electromagnetic waves]. Moscow: Izd-vo inostrannoy literatury, 1962, 193 p.
31. Stratis G., Anantha V., Taflove A. Numerical calculation of diffraction coefficients of generic conducting and dielectric wedges using FDTD ,IEEE Transactions on Antennas and Propaga-tion, 1997, Vol. 45, No. 10, pp. 1525-1529.
32. Deng S., MacCartney G.R., Rappaport T.S. Indoor and Outdoor 5G Diffraction Measurements and Models at 10, 20, and 26 GHz, 2016 IEEE Global Communications Conference (GLOBECOM), 4-8 Dec. 2016.
33. Barratt T.H., Mellios E., Cain P., Nix A.R., Beach M.A. Measured and modelled corner diffrac-tion at millimetre wave frequencies, 2016 IEEE 27th Annual International Symposium on Per-sonal, Indoor, and Mobile Radio Communications (PIMRC), 4-8 Sept, 2016.
34. Fuks I.M. Backscattering from a statistically rough 2-D surface: Diffraction corrections to geometrical optics cross sections, Radio Science, 2007, Vol. 42, No. 6, pp. 1-11.
35. Kouyoumjian R.G., Manara G., Nepa P., Taute B.J.E. The diffraction of an inhomogeneous plane wave by a wedge, Radio Science, 1996, Vol. 31, No. 6, pp. 1387-1397.
36. Smirnov V.I. Kurs vysshey matematiki [A course of higher mathematics]. In 5 vol. Vol. 3. Part 2. Moscow: Izd-vo «Nauka», 1974, 672 p.

Comments are closed.