Article

Article title SHORT-TERM FORECASTING OF TECHNICAL PARAMETER BASED ON ADAPTIVE POLYNOMIAL MODELS OF TIME SERIES
Authors S.I. Klevtsov, D.А. Ivanov
Section SECTION IV. METHODS, MODELS AND ALGORITHMS OF INFORMATION PROCESSING
Month, Year 06, 2017 @en
Index UDC 681.3.062
DOI
Abstract The prospects of using time series for forecasting changes in a technical parameter in real time are considered. The task is to evaluate the dynamics of the parameter"s trend. Forecasting is carried out using simple adaptive models. This condition is associated with the implementation of the prediction procedure in the microcontroller of the object monitoring system, and the procedure should be carried out in the background. As the basic models, adaptive polynomial models of the first and second order are chosen, based on the method of multiple exponential smoothing. Models were modified to adapt to the features of the calculation process in the microcontroller. They are based on fairly simple algorithms and programs that are characterized by low computational costs and are easily implemented in the microcontroller in the background. The initial data, the accel-eration values for the three axes, were obtained using a three-axis accelerometer mounted on the car. The data before the simulation was not pre-processed. However, in the process of modeling the real-time forecasting process, emissions were excluded from the data set. The forecast was carried out by one step of the information retrieval from the sensor. The models were evaluated on the same experimental sample. A comparison of the prediction results showed that the second-order adaptive polynomial model as a whole is more preferable from the point of view of the reduced error. Both models can be used to estimate the variation of a parameter by an arbitrary number of prediction intervals. The efficiency of using models for the prediction task depends to a large extent on the definition of the adaptation parameters, such as the smoothing constant and the initial estimates of the coefficients of the time series model. In this paper, the features of model behavior are considered and the rules for selecting the adaptation parameters are determined depending on the nature of the change in the technical parameter over time.

Download PDF

Keywords Time number; polynomial model; forecasting; technical parameter; microprocessor; real time.
References 1. Klevtsova A.B. Parametricheskaya zonnaya otsenka sostoyaniya tekhnicheskogo ob"ekta s ispol'zovaniem rezhimnoy karty [Parametrical band model of the estimation condition for technical object with use of the regime card], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2010, No. 5 (106), pp. 107-111.
2. Matuszewski J. Application of clustering methods for recognition of technical objects, Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET), 2010 International Conference, 2010, pp. 39-40.
3. Klevtsova A.B., Klevtsov G.S. Modeli parametricheskoy ekspress-otsenki sostoyaniya tekhnicheskogo ob"ekta [Models parametrical the express train – estimations of a condition the technical object], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2008, No. 11 (88), pp. 15-19.
4. Detlev W. Gross. Partial Discharge Measurement and Monitoring on Rotating Machines, IEEE Int. Sym. On Elect. Insul, Boston MAUSA, April 7-10, 2002, pp. 33-41.
5. Yaroshenko I.V. Matematicheskaya model' i metod klassifikatsii tekhnicheskogo sostoyaniya vysokovol'tnykh mekhatronnykh moduley [The mathematical model and the classification method of the technical condition of high voltage modules of mechatronic], Inzhenernyy vestnik Dona [Engineering Journal of Don], 2014, No. 2. Available at: ivdon.ru/ru/magazine/ archive/n2y2014/2330.
6. Evtikhiev N.N., Karp V.P., Pudova N.V. Intellektual'nye sistemy podderzhki prinyatiya resheniy i optimizatsii upravleniya v slozhno organizovannykh dinamicheskikh ob"ektakh [Intelligent decision support and control optimization in highly organized dynamic objects], Pribory i sistemy upravleniya [Devices and control systems], 1996, No. 3, pp. 35-40.
7. Lihua Sun, Yingjun Guo, Haichao Ran. A New Method of Early Real-Time Fault Diagnosis for Technical Process, Electrical and Control Engineering (ICECE), 2010 International Con-ference, 2010. Wuhan, China, pp. 4912-4915.
8. Vovk S.P., Ginis L.А. Modelling and forecasting of transitions between levels of hierarchies in Difficult formalized systems, European Researcher, 2012, Vol. (20), No. 5-1, pp. 541-545.
9. Sergienko A.B. Tsifrovaya obrabotka signalov [Digital signal processing]. Satnt Petersburg: Piter, 2002, 608 p.
10. Klevtsov S.I., Klevtsova A.B., Burinov S.V. Model' parametricheskoy kachestvennoy ierarkhicheskoy otsenki sostoyaniya tekhnicheskoy sistemy [A parametric hierarchical model for quality assessment technical systems], Inzhenernyy vestnik Dona [Engineering Journal of Don], 2015, No. 3. Available at: ivdon.ru/ru/magazine/archive/n3y2015/3088.
11. Boyle C. Mastering Statistics with your Microcomputer. Macmillan Master Series. Macmillan Education UK.1986, 155 p.
12. Klevtsov S.I. Otslezhivanie izmeneniya sostoyaniya dinamicheskogo ob"ekta v real'nom vremeni s ispol'zovaniem mikroprotsessornogo modulya [Tracking state changes of the dynamic object in real time using a microprocessor module], Vserossiyskaya nauchno-tekhnicheskaya konferentsiya «Problemy razrabotki perspektivnykh mikro- i nanoelektronnykh sistem (MES)»: Sbornik trudov [all-Russian scientific-technical conference "problems of development of perspective micro- and nanoelectronic systems (MES)" Collection of writings.], 2012, No. 1, pp. 684-687.
13. Klevtsov S.I. Predvaritel'naya otsenka sostoyaniya sovokupnosti parametrov tekhnicheskogo ob"ekta s ispol'zovaniem intellektual'nogo mikroprotsessornogo modulya [The simplified es-timation of the condition for set of parameters of technical object with use of the intellectual microprocessor module], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2010, No. 5 (106), pp. 43-48.
14. Klevtsov S.I. Modelirovanie algoritma kratkosrochnogo prognozirovaniya izmeneniya bystromenyayushcheysya fizicheskoy velichiny v real'nom vremeni [Modeling of algorithm of short-term forecasting of the rapidly changing physical quantities in real time], Inzhenernyy vestnik Dona [Engineering Journal of Don], 2012, No. 3 (21), pp. 199-205.
15. Box George E.P., Jenkins Gwilym M., Reinsel Gregory C. Time series analysis: forecasting and control. 4th ed. A JOHN WILEY & SONS, INC., PUBLICATION, 2015, 712 p.
16. Lukashin Yu.P. Adaptivnye metody kratkosrochnogo prognozirovaniya vremennykh ryadov [Adaptive methods for short time series forecasting]. Moscow: Finansy i statistika, 2003, 416 p.
17. Klevtsov S.I. Prognozirovanie izmeneniy fizicheskoy velichiny v real'nom vremeni s ispol'zovaniem lineynogo adaptivnogo fil'tra [Forecasting of changes of size physical in real time with use of the linear adaptive filter], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2013, No. 5 (142), p. 180-185.
18. Peter J. Brockwell, Richard A. Davis. ITSM: An Interactive Time Series Modelling Package for the PC. Springer New York, 1991, 105 p.
19. Brillindzher D.R. Vremennye ryady. Obrabotka dannykh i teoriya: monografiya [Time series. Data processing and theory: monograph], ed. by A.N. Kolmogorova: per. s angliyskogo. Mos-cow, 1980, 536 p.
20. Sidorov S.G., Nikologorskaya A.V. Analiz vremennykh ryadov kak metod postroeniya prognoza potrebleniya elektroenergii [Time series analysis as a method of building a Pro-expectation of electricity consumption], Vestnik IGEU [Vestnik of Ivanovo Power Engineering University], 2010, Issue 3, pp. 1-3.
21. Klevtsov S.I. Identification of the State of Technical Objects Based on Analyzing a Limited Set of Parameters, 2016 International Siberian Conference on Control and Communications, SIBCON 2016 – Proceedings, 2016, pp. 749-752.
22. Darkhovsky B., Piratinska A. Novel Methodology for Segmentation of Time Series Generated by Different Mechanisms, Proceedings of International work-conference on Time Series (ITISE-2014). Iss. 1. Granada: Copicentro Granada S.L., 2014, pp. 273-285.
23. Darkhovsky B., Brodsky B. Asymptotically Optimal Methods of Early Change-point Detection, Sequential Analysis, 2013, No. 32, pp. 158-181.
24. Klevtsov S.I. Osobennosti vybora parametrov nastroyki modeli sglazhivayushchego vre-mennogo ryada dlya osushchestvleniya kratkosrochnogo prognozirovaniya izmeneniya fiziche-skoy velichiny [Choice of parameters for adjustment models of a smoothing time number for short-term forecasting of physical size], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2011, No. 5 (118), pp. 133-138.
25. Klevtsov S.I., Udod Y.V. The Impact of the Parameters of Constructing a Model for a Microprocessor-Based Sensors Multi-Segment Spatial Conversion Characteristics on the Accuracy of Measuring Physical Quantities, World Applied Sciences Journal, 2014, Vol. 29, No. 6, pp. 710-714.
26. Klevtsov S.I. Formirovanie mul'tisegmentnoy modeli graduirovochnoy kharakteristiki intellektual'nogo datchika [Formation of multisegment model of the transfer characteris-tic of the intellectual gauge], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engi-neering Sciences], 2008, No. 11 (88), pp. 8-11.

Comments are closed.