Article

Article title RESEARCH INTO METHODS OF ENERGY USE REDUCTION FOR OPTICAL SCHEMES OF TARGET LOCATION MEASUREMENT
Authors A.N. Akolzin, D. G. Kovtun, A.A. Legin
Section SECTION IV. METHODS, MODELS AND ALGORITHMS OF INFORMATION PROCESSING
Month, Year 06, 2017 @en
Index UDC 621.383
DOI
Abstract The current trends in the development of energy use metering devices have brought into life digital devices, which, alongside with traditional metering instruments, provide a number of addi-tional features. Among them are the following: correction of the energy use readings, logging function, interaction with metering devices to control the readings through various interfaces (both wired and wireless). These instruments are autonomous devices, working on battery supply of 2–3,5 А•of capacity, which can be replaced during the device calibration. The run-time between autonomous power supply replacement periods ranges between 5 and 10 years. The main consum-ers are microprocessor, measuring circuit and display devices. The power consumption of the microprocessor and the display devices are known from the technical documentation and can be minimized by choosing the optimum operating mode. This paper dwells on the methods for reduc-ing the energy consumption of a measurement system consisting of an optical pair of an emitter (an infrared LED) and a receiver (phototransistor). The characteristics of the system power use at various parameters of the scanning pulse, optical circuits and the components used as measuring circuits in metering energy. Oscillograms of the effects and responses of the optical system are given for different durations and options to reduce energy use. A method for reducing power con-sumption by reducing the pulse width, which, on the other hand, leads to an increase in the LED current, is considered. Besides, options for restoring waveforms based on amplifiers and compara-tors with low power consumption are considered.

Download PDF

Keywords Optical emitters; metering devices; measuring circuits.
References 1. Zhogolko A. Povyshenie effektivnosti ispol'zovaniya energoresursov putem vnedreniya sistem intellektual'nogo ucheta [Improving the efficiency of energy use through the implementation of smart metering systems], 2007.
2. Trasov V.V., Yakushenkov Yu.G. Tendentsii sovershenstvovaniya elementnoy bazy infrakrasnykh sistem 3-go pokoleniya [Trends in the improvement of the element base infrared systems of 3-th generation], Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie [Journal of Instrument Engineering], 2012, Vol. 55, No. 5.
3. Infrared emitting diode KP-3216F3C. Available at: http://lib.chipdip.ru/195/doc000195243.pdf (accessed 18 April 2017).
4. Infrared emitting diode KM2520SF4C03. Available at: http://www.mouser.com/ds/2/216/-2323.pdf (accessed 18 April 2017).
5. Leistungsstarke IR-Lumineszenzdiode High Power Infrared Emitter SFH 4200. Available at: http://media.digikey.com/pdf/Data%20Sheets/Osram%20PDFs/SFH_4200,05.pdf (accessed 18 April 2017).
6. Silicon NPN Phototransistor, RoHS Compliant TEMT1000. Available at: http://www.vishay.com/ docs/81554/temt1000.pdf (accessed 18 April 2017).
7. Silicon NPN Phototransistor KP-3216P3C. Available at: http://lib.chipdip.ru/199/ doc000195289.pdf (accessed 18 April 2017).
8. Infrared emitting diode KP256SF4C03. Available at: http://www.mouser.com/ds/2/216/-2359.pdf (accessed 18 April 2017).
9. Silicon NPN Phototransistor, RoHS Compliant BPW17N. Available at: http://www.vishay.com/ docs/814578/bpw17n.pdf (accessed 18 April 2017).
10. Silicon NPN Phototransistor, GL100MN1MP. Available at: http://media.digikey.com /pdf/Data%20Sheets/Sharp% 20PDFs/GL100MN1MPx.pdf (accessed 18 April 2017).
11. Lei B., Hofmann H. Energy consumption and low power design of optical equipmentб Bell Labs Technical Journal, 2010б Vol. 15, No. 2б зз. 169-174.
12. Peskin A. Obzor skhem vklyucheniya i upravleniya sovremennymi svetodiodami [An overview of the schemes and the inclusion of modern LEDs], Poluprovodnikovaya svetotekhnika [Semiconductor lighting technology], 2010, No. 3, pp. 22-24.
13. Ivanov D. Operatsionnye usiliteli s nizkim energopotrebleniem [Operational amplifiers with low power consumption], Komponenty i тekhnologii [Components and Technologies], 2009, No. 100.
14. Reznikov S. i dr. Operatsionnye usiliteli dlya ekonomichnykh primeneniy [Operational amplifiers are designed for economical applications], Komponenty i tekhnologii [Components and Technologies], 2005, No. 49.
15. Shinkarenko V.G. Fototranzistor. Signal'nye i porogovye kharakteristiki [A phototransistor. Signal and threshold data], Elektromagnitnye volny i elektronnye sistemy [Electromagnetic Waves and Electronic Systems.], 2009, Vol. 14, No. 7, pp. 40-65.
16. Khorovits P., Khill U. Iskusstvo skhemotekhniki [The art circuitry]: In 2 vols., 2010, No. 3,
pp. 22-24.
17. Danilova T.N. i dr. Svetodiody na osnove tverdykh rastvorov GaSb dlya sredney infrakrasnoy oblasti spektra 1.6–4.4 mkm. Obzor [Led-based solid solutions GaSb for mid-infrared spectral range 1.6–4.4 µm. Revie], Fizika i tekhnika poluprovodnikov [Physics and Technics of Semi-conductors], 2005, Vol. 39, No. 11, pp. 1281.
18. Rogalski A. Infrared detectors: status and trends, Progress in quantum electronics, 2003,
Vol. 27, No. 2, pp. 59-210.
19. Borodulin A. STM8 i STM32–ob"edinennoe prostranstvo 8-i 32-razryadnykh mikrokontrollerov [STM8 and STM32–joint space 8-and 32-bit microcontrollers], Komponenty i tekhnologii [Components and technologies], 2009, No. 99.
20. Kirienko V.V., Sinyutin E.S. Obzor metodov testirovaniya energoeffektivnosti mikrokontrollerov s ul'tranizkim potrebleniem dlya meditsinskogo oborudovaniya [Review of methods of testing energy efficiency of microcontrollers with ultra low consumption for medical equipment], Polzunovskiy vestnik [Polzunovskii Herald], 2014, No. 2, pp. 212.

Comments are closed.