Article

Article title REGULATORY SYSTEM AND CARDIAC ARRHYTHMIA DIAGNOSTICS BASED ON SHORT RR-INTERVALS SAMPLE ANALYZES
Authors E.B. Gorbunova
Section SECTION IV. METHODS, MODELS AND ALGORITHMS OF INFORMATION PROCESSING
Month, Year 06, 2017 @en
Index UDC 51-7.57.087
DOI
Abstract The heart rate variability (HRV) is an indicator of the subject"s regulatory system adaptability and it appears the most informative when the subject is under exercise stress which makes his HRV to become a nonstationary process. HRV dynamics provides additional information of individual"s health condition but requires to special approach. The paper contains a research of small-sample statistical method applied to electrocardiogram (ECG) analysis. We present a special method of small-sample imitative addition to increase accuracy of electrocardiogram processing. This ap-proach gives the possibility to observe alteration of RR-intervals standard deviation and probability density distribution as a temporally continuous process. It also lets to evaluate stress index (Baevsky index) time dependence with varying window width. Described procedure of data preprocessing lets to increase accuracy of HRV parameter determination when operated at small data, it"s usage pro-vides the following advantages: feasibility of HRV analyses on any CIG fragment of interest avoiding complicated algorithms of stationary segments researching; capability of use of comparatively short noise free sections when working with noisy and heart rhythm disorderd EEG signals; HRV time history analyzes; feasibility of Baevsky index evaluating during patient’s condition changing; time localization of arrhythmia manifestations. Сonsequently, we elicited practicability of small-sample imitative adding method while HRV analyzing exercise heart rate. A negative attribute of the proposed approach is that absolute measures of HRV as well as absolute value of Baevsky index may not appear to be in agreement with typical values because of different averaging interval.

Download PDF

Keywords Heart rate variability; RR interval time series; Short-sample statistics; Method of imitative addition; Baevsky index; short-time HRV analyses.
References 1. Ryabykina G.V., Sobolev A.V. Variabel'nost' ritma serdtsa: monografiya [The heart rate varia-bility: monographъ. Moscow: Izd-vo «Star'Ko», 1998, 196 p.
2. Andre E. Aubert´, Bert Seps and Frank Beckers. Heart Rate Variability in Athletes, Sports Med., 2003, Vol. 33 (12).
3. Baevskiy R.M. Prognozirovanie sostoyaniy na grani normy i patologii [Forecasting States on the verge of norm and pathology]. Moscow: Meditsina, 1979, 298 p.
4. Sinyutin S.A. Strukturnyy analiz elektrofiziologicheskikh signalov [Structural analysis of elec-trophysiological signals], Izvestiya TRTU [Izvestiya TSURE], 2004, No. 6 (41), pp. 156-166.
5. Sinyutin S.A., Zakharevich V.G. Analiz stressa po dannym variatsionnoy pul'sometrii s pomoshch'yu Wavelet preobrazovaniya [Using wavelet transform in stress analysis by variation pulsometry data], Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2012, No. 9 (134), pp. 61-67.
6. Verlinde D, Beckers F, Ramaekers D, et al. Wavelet decomposition analysis of heart rate vari-ability in aerobic athletes, Auton Neurosci, 2001, Jul. 20, Vol. 90 (1-2), pp. 138-41.
7. Akselrod S. Spectral analysis of fluctuations in cardiovascular parameters: a quantitative tool for the investigation of autonomic control, Trends Pharmacol Sci., 1988, No. 9 (1), pp. 6-9.
8. Gaskarov D.V., Shapovalov V.I. Malaya vyborka [Small sample]. Moscow: Statistika, 1978, 248 p.
9. Rosenblatt M. Remarks on some nonparametric estimates of a density function, Annals of Mathematical Statistics, 1956, Vol. 27, pp. 832-835.
10. Parsen E. On estimation of a probabilities for sums of bounded random variables, Annals of Mathematical Statistics, 1962, Vol. 33, pp. 1065-1076.
11. Samoylenko A.P., Gorbunova E.B. Tekhnologii prognozirovaniya nadezhnosti REA pri ogranichennykh ob"emakh statisticheskikh vyborok: monografiya [Technology forecasting re-liability electronic equipment when limited amounts of statistical samples: monograph]. Rostov-on-Donu: Izd-vo YuFU, 2014, 154 p.
12. Samoylenko A.P., Gorbunova E.B. Metod vosstanovleniya plotnosti veroyatnostey pro-gnoziruemoy sluchaynoy velichiny po ukorochennoy vyborke dannykh [Method of recovering probability density is Pro-generamos random variable following a shortened sample data], Nelineynyy mir [Nonlinear world], 2015, No. 6, pp. 10-17.
13. Gorbunova E.B. Metod neparametricheskoy otsenki zakona raspredeleniya sluchaynogo para-metra po malomu chislu nablyudeniy [The method is a nonparametric estimate of the distribution of a random para-meter for a small number of observations], Inzhenernyy vestnik Dona [Engineering Journal of Don], 2014, No. 3. Available at: ivdon.ru/magazine/archive/ n3y2014/2516 (accessed 9 December 2016).
14. Kobzar' A.I. Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnykh rabotnikov [Applied mathematical statistics. For engineers and researchers]. Moscow: Fizmatlit, 2006, 816 p.
15. Rangayan R.M. Analiz biomeditsinskikh signalov. Prakticheskiy podkhod [Analysis of bio-medical signals. Practical approach]: translation from English, ed. by A.P. Nemirko. Moscow: Fizmatlit, 2007, 440 p.
16. Pan J, Tompkins W.J. A real time QRS detection algorithm, IEEE Trans. Biomed. Eng., 1985, Vol. 32, pp. 230-236.
17. Rangayyan R.M. Biomedical signal analysis: A Case-Study Approach, IEEE Press and Wiley, New York, NY, 2002, 516 p.
18. Shitikov V.K., Rozenberg G.S. Randomizatsiya i butstrep: statisticheskiy analiz v biologii i ekologii s ispol'zovaniem R [Randomization and bootstrap: a statistical analysis in biology and ecology with R]. Tol'yatti: Kassadra, 2013, 305 p.
19. Silverman B.W. Density Estimation for Statistics and Data Analysis, Monographs on Statistics and Applied Probability, Chapman and Hall. 1986.
20. Efron B. An introduction to the bootstrap / Brad Efron, Rob Tibshirani. p. cm. Includes biblio-graphical references. ISBN 0-412-0423 1-2 1. Bootstrap (Statistics) I. Tibshirani, Robert. 11. Title. QA276.8.E3745 1993 5 19.5'44-dc20 93-4489 CIP.
21. Sinyutin S.A. Analiz RR interval'nogo ryada v usloviyakh mnogochislennykh pomekh [Analysis of RR interval time series in the context of many interferences], Polzunovskiy vestnik [Polzunovsky vestnik], 2012, No. 3-2, pp. 56-59.

Comments are closed.