Article

Article title MODIFIED METHOD OF RECONSTRUCTION OF IMAGES BASED ON SEARCH OF SIMILAR AREAS
Authors R.R. Ibadov, S.R. Ibadov, V.V. Voronin, V.P. Fedosov
Section SECTION IV. METHODS, MODELS AND ALGORITHMS OF INFORMATION PROCESSING
Month, Year 06, 2017 @en
Index UDC 621.396
DOI
Abstract For the analysis of photo and video data obtained from cameras installed both on space surveillance devices and on mobile aircraft, the methods of texture analysis are widely used. Using the methods of texture analysis, the problems of qualitative clustering of the underlying surface and the search for target objects, for example, enemy disguised positions, etc., are solved. Color and texture are important characteristics of the image. The problem of the analysis of color textures includes such aspects as the description of color textures, their classification, that is formation of clusters (at the same time understand as a cluster usually an object group, forming area compact somewhat in description space), and the segmentation, that is a partition of the image on area which are uniform concerning one or several characteristics, or belong to some cluster. The article considers the method of image reconstruction based on the search for similar blocks using the texture synthesis algorithm. The efficiency of the new approach is shown on several examples for different areas with lost pixels. The subject of the study are methods and algorithms for processing the space-time reconstruction of two-dimensional signals based on a geometric model of images. The object of the study is a set of test static images. The result of the study is a modification of the method of image reconstruction based on the search for similar blocks in order to reduce the error of image reconstruction. The novelty of the work is an algorithm which allows improving the quality of image restoration. The received results allow reducing a mean square error. At the solution of objectives results on the basis of which it is possible to draw conclusions are received: developed is the method of recovery of images on the basis of search of similar blocks where it is offered to use a method of gluing the blocks as modification; the analysis of results of the conducted research has shown that the offered method allows improving the quality of images reconstruction.

Download PDF

Keywords Reconstruction; synthesis of textures; segmentation; images; restoration.
References 1. Gonsales R., Vuds R. Tsifrovaya obrabotka izobrazheniy [Digital image processing]. Moscow: Tekhnosfera, 2005, 1072 p.
2. Fomin A.A., Zhiznyakov A.L. Udalenie pyaten s izobrazheniy arkhivnykh fotodokumentov na osnove veyvlet preobrazovaniya [Removing stains from images of archival photographs based on the wavelet transform], 8 Mezhdunarodnaya konferentsiya: Tsifrovaya obrabotka signalov i ee primenenie [the 8th international conference: Digital signal processing and its application]. Moscow, 2006.
3. Yane B. Tsifrovaya obrabotka izobrazheniy [Digital image processing]. Moscow: Tekhnosfera, 2007, 584 p.
4. Gruzman I.S., Kirichuk V.S., Kosykh V.P., Peretyagin G.I. Tsifrovaya obrabotka izobrazheniy v informatsionnykh sistemakh: ucheb. posobie dlya studentov V kursa REF (spetsial'nosti “Radiotekhnika” i “Sredstva svyazi s podvizhnymi ob"ektami”) [Digital image processing in information systems: textbook for students of V rate of REF (a speciality “radio engineering” and “communication Means with mobile objects”)]. Novosibirsk: Izd-vo NGTU, 2000, 168 p.
5. Yaroslavskiy L.P. Vvedenie v tsifrovuyu obrabotku izobrazheniy [Introduction to digital image processing]. Moscow: Sov.radio, 1979, 272 p.
6. Perevertkin S.M. Bortovaya telemetricheskaya apparatura kosmicheskikh letatel'nykh apparatov [On-Board telemetry equipment spacecraft]. Moscow: Mashinostroenie, 1977, 208 p.
7. Marchuk V.I., Voronin V.V. Rekonstruktsiya znacheniy utrachennykh pikselov izobrazheniy v usloviyakh ogranichennoy apriornoy informatsii [Reconstruction of the lost values of pixels of images with limited a priori information ], Nauchno-tekhnicheskie vedomosti SPbGPU [Scien-tific and technical Bulletin of SPbSPU]. Sankt-Peterburg, 2009, No. 1, pp. 51-55.
8. Sizyakin R.A., Voronin V.V., Marchuk V.I., Ibadov S.R., Ibadov R.R., Svirin I.S. Obnaruzhenie i rekonstruktsiya defektov na fotografiyakh na osnove lokal'nykh binarnykh shablonov [Detection and reconstruction of defects in the photographs based on local binary patterns], Nauchno-tekhnicheskiy vestnik Povolzh'ya [Scientific and Technical Volga region Bulletin], 2014,
No. 6, pp. 333-336.
9. Marchuk V.I., Voronin V.V., Frants V.A. Modifitsirovannyy metod vosstanovleniya dvumernykh signalov [A modified method for reconstruction of two-dimensional signals], Nauchno-tekhnicheskie vedomosti SPbGPU [Scientific and technical Bulletin of SPbSPU], 2011, No. 1, pp. 31-36.
10. Voronin V.V., Gapon N.V., Sizyakin R.A., Ibadov R.R., Ibadov S.R., Semenishchev E.A. Issledovanie metoda vosstanovleniya iskazhennykh pikseley izobrazheniy na osnove teksturno-geometricheskoy modeli [Research of a method to restore the distorted image pixel on the basis of textural and geometric models], VII Mezhdunarodnaya nauchno-prakticheskaya konferentsiya: Voprosy nauki: Sovremennye tekhnologii i tekhnicheskiy progress [VII international scientific-practical conference: Questions of science: Modern technology and technical progress]. Vol. 8. Voronezh, 2015, pp. 41-44.
11. Alkachouh, Z., Bellanger M.G. Fast DCT-based spatial domain interpolation of blocks in im-ages, IEEE Trans. Image Process, 2000, pp. 729-732.
12. Ballester C., Bertalmio M., Caselles V., Sapiro G., Verdera J. Filling-in by joint interpolation of vector fields and gray levers, IEEE Trans. On Image Processing, 2001, No. 10 (8),
pp. 1200-1211.
13. Bertalmio M.L., Vese G. Sapiro S. Osher Simultaneous texture and structure image inpainting, Proceedings of the International Conference on Computer Vision and Pattern Recognition, 2003, pp. 707-712.
14. Bertalmio M., Sapiro G., Caselles V., Ballester C. Image inpainting, Computer Graphics Pro-ceedings, K. Akeley, Ed. ACM Press ACM SIGGRAPH Addison Wesley Longman, 2000,
pp. 417-424.
15. Criminisi A., P´erez P., Toyama К. Region filling and object removal by exemplar-based image inpainting, IEEE transactions on image processing, 2004, Vol. 13, No. 9, pp. 1-13.
16. DeBonet J.S. Multiresolution sampling procedure for analysis and synthesis of texture images, In Proc. of SIGGRAPH, 1997, pp. 361-368.
17. Fralenko V.P. Analiz spektrograficheskikh tekstur dannykh distantsionnogo zondirovaniya Zemli [Spectrographic analysis of texture data of remote sensing of the Earth], Iskusstvennyy intellekt i prinyatie resheniy [Artificial intelligence and decision-making], 2010, pp. 111-118.
18. Potapov A.A. Novye informatsionnye tekhnologii na osnove veroyatnostnykh teksturnykh i fraktal'nykh priznakov v radiolokatsionnom obnaruzhenii malokontrastnykh tseley [New in-formation technologies based on probabilistic texture and fractal features in the radar detection of low contrast targets], Radiotekhnika i elektronika [Journal of Communications Technology and Electronics], 2003, No. 9, 906 p.
19. Rogov A.A., Spiridonov K.N. Primenenie spektra fraktal'nykh razmernostey Ren'i kak invarianta graficheskogo izobrazheniya [The application spectrum of fractal dimensions Renyi as invariant graphic image], Vestnik Sankt-Peterburgskogo universiteta [Vestnik of Saint Petersburg University], 2008, No. 2, pp. 30-37.
20. Mokshanina D.A. Raspoznavanie polutonovykh tekstur na osnove stokhasticheskoy geometrii i funktsional'nogo analiza: dis. … kand. tekh. nauk [Recognition of gray-scale textures based on stochastic geometry and functional analysis. Cand. of eng. sc. diss.] Penza, 2010, pp. 214-221.
21. Fedotov N.G. Teoriya priznakov raspoznavaniya obrazov na osnove stokhasticheskoy geometrii i funktsional'nogo analiza [The theory of signs recognition based on stochastic geometry and functional analysis]. Moscow: Fizmatlit, 2009, 804 p.
22. Fedotov N.G., Kadyrov A.A. Novye priznaki izobrazheniy, invariantnye otnositel'no gruppy dvizheniy i affinnykh preobrazovaniy [New image features, invariant under the group of motions and affine transformations], Avtometriya [Autometry], 1997, 765 p.
23. Chan T.F., Shen J. Mathematical models of local non-texture inpaintings, SIAM J. Appl., Math, 2002, Vol. 62 (3), pp. 1019-1043.
24. Ibadov R.R., Ibadov S.R., Gapon N.V., Sizyakin R.A. Issledovanie effektivnosti metodov sinteza tekstur na osnove eksperimental'nykh dannykh [A study of the effectiveness of methods of texture synthesis based on experimental data], Nauchnaya vesna [Scientific spring]. Shakhty, 2016, pp. 167-173.
25. Efros A.A., Leung T.K. Texture Synthesis by Non-parametric Sampling, Proc. ICCV, 1999,
pp. 210-218.

Comments are closed.